Skip to main content
Log in

High-throughput liquid chromatography differential mobility spectrometry mass spectrometry for bioanalysis: determination of reduced and oxidized form of glutathione in human blood

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Currently, the measure of the oxidative stress, from oxidized and reduced glutathione (GSSG and GSH respectively), for large cohorts of samples, is generally limited to spectrometric methods. In this study, a high-throughput assay for GSH after derivatization with N-ethylmaleimide and GSSG in blood sample was developed with an analysis time of 1.5 min. The method combines protein precipitation and a short LC (10-mm length) column where compounds were trapped in front-flush mode and eluted in back-flush mode. This setup is combined with modifier-assisted differential ion mobility spectrometry (DMS, SelexIon) and detection is performed in the selected reaction monitoring mode using positive electrospray ionization. In DMS, various modifiers were investigated including N2, methanol, toluene, ethanol, acetonitrile, and isopropanol to improve assay selectivity. Using EtOH as modifier, the limit of quantification (LOQ) was found to be 0.4 μM for GSSG and 3.2 μM for GS-N-ethylmaleimide (NEM) using a blood volume of 60 μL. The method is linear over a wide dynamic concentration range of 0.4 to 400 μM for GSSG and from 3.2 to 3200 μM for GS-NEM. The inter-assay precision of QC samples were ≤ 6.7%, with accuracy values between 98.3 and 103%. The method was further cross-validated with a LC Hypercarb-DMS-MS/MS method by the analysis of human blood samples. The bias between both assays ranged from − 0.3 to 0.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu GY, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.

    Article  CAS  Google Scholar 

  2. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci. 2009;46(5–6):241–81. https://doi.org/10.3109/10408360903142326.

    Article  CAS  PubMed  Google Scholar 

  3. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27(3):502–22. https://doi.org/10.1016/0003-2697(69)90064-5.

    Article  CAS  PubMed  Google Scholar 

  4. Kosower EM, Kosower NS. [12] Bromobimane probes for thiols. Methods in Enzymology. Academic Press; 1995. p. 133–48.

  5. Shaik IH, Mehvar R. Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal Bioanal Chem. 2006;385(1):105–13. https://doi.org/10.1007/s00216-006-0375-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical determination of glutathione: a review. Analyst. 2012;137(10):2285–96. https://doi.org/10.1039/c2an35090d.

    Article  CAS  PubMed  Google Scholar 

  7. Carroll D, Howard D, Zhu H, Paumi CM, Vore M, Bondada S, et al. Simultaneous quantitation of oxidized and reduced glutathione via LC-MS/MS: an insight into the redox state of hematopoietic stem cells. Free Radic Biol Med. 2016;97:85–94. https://doi.org/10.1016/j.freeradbiomed.2016.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore T, Le A, Niemi A-K, Kwan T, Cusmano-Ozog K, Enns GM, et al. A new LC–MS/MS method for the clinical determination of reduced and oxidized glutathione from whole blood. J Chromatogr B. 2013;929(Supplement C):51–5. https://doi.org/10.1016/j.jchromb.2013.04.004.

    Article  CAS  Google Scholar 

  9. Guan X, Hoffman B, Dwivedi C, Matthees DP. A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed Anal. 2003;31(2):251–61. https://doi.org/10.1016/S0731-7085(02)00594-0.

    Article  CAS  PubMed  Google Scholar 

  10. Serru V, Baudin B, Ziegler F, David J-P, Cals M-J, Vaubourdolle M, et al. Quantification of reduced and oxidized glutathione in whole blood samples by capillary electrophoresis. Clin Chem. 2001;47(7):1321–4.

    CAS  PubMed  Google Scholar 

  11. Havel K, Pritts K, Wielgos T. Quantitation of oxidized and reduced glutathione in plasma by micellar electrokinetic capillary electrophoresis. J Chromatogr A. 1999;853(1):215–23. https://doi.org/10.1016/S0021-9673(99)00518-X.

    Article  CAS  PubMed  Google Scholar 

  12. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106(1):207–12.

    Article  CAS  Google Scholar 

  13. Santa T. Recent advances in analysis of glutathione in biological samples by high-performance liquid chromatography: a brief overview. Drug Discov Ther. 2013;7(5):172–7.

    CAS  PubMed  Google Scholar 

  14. Giustarini D, Dalle-Donne I, Milzani A, Rossi R. Detection of glutathione in whole blood after stabilization with N-ethylmaleimide. Anal Biochem. 2011;415(1):81–3. https://doi.org/10.1016/j.ab.2011.04.013.

    Article  CAS  PubMed  Google Scholar 

  15. Florholmen-Kjaer A, Lysa RA, Fuskevag OM, Goll R, Revhaug A, Mortensen KE. A sensitive method for the analysis of glutathione in porcine hepatocytes. Scand J Gastroenterol. 2014;49(11):1359–66. https://doi.org/10.3109/00365521.2014.964757.

    Article  CAS  PubMed  Google Scholar 

  16. Lee SG, Yim J, Lim Y, Kim JH. Validation of a liquid chromatography tandem mass spectrometry method to measure oxidized and reduced forms of glutathione in whole blood and verification in a mouse model as an indicator of oxidative stress. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1019:45–50. https://doi.org/10.1016/j.jchromb.2015.10.041.

    Article  CAS  Google Scholar 

  17. Giustarini D, Tsikas D, Colombo G, Milzani A, Dalle-Donne I, Fanti P, et al. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: an elephant in the room. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1019:21–8. https://doi.org/10.1016/j.jchromb.2016.02.015.

    Article  CAS  Google Scholar 

  18. Marti-Carvajal AJ, Simancas-Racines D, Pena-Gonzalez BS. Prolonged storage of packed red blood cells for blood transfusion. Cochrane Database Syst Rev. 2015;7:CD009330. https://doi.org/10.1002/14651858.CD009330.pub2.

    Article  Google Scholar 

  19. Sparrow RL. Time to revisit red blood cell additive solutions and storage conditions: a role for “omics” analyses. Blood Transfus. 2012;10(Suppl 2):s7–11. https://doi.org/10.2450/2012.003S.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39. https://doi.org/10.1056/NEJMoa070403.

    Article  CAS  PubMed  Google Scholar 

  21. Mustafa I, Al Marwani A, Mamdouh Nasr K, Abdulla Kano N, Hadwan T. Time dependent assessment of morphological changes: leukodepleted packed red blood cells stored in SAGM. Biomed Res Int. 2016;2016:4529434. https://doi.org/10.1155/2016/4529434.

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–19. https://doi.org/10.1111/trf.12804.

    Article  CAS  PubMed  Google Scholar 

  23. Gevi F, D’Alessandro A, Rinalducci S, Zolla L. Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM. J Proteomics. 2012;76 Spec No.:168–80. https://doi.org/10.1016/j.jprot.2012.03.012.

    Article  CAS  Google Scholar 

  24. Schneider BB, Nazarov EG, Londry F, Vouros P, Covey TR. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2016;35(6):687–737. https://doi.org/10.1002/mas.21453.

    Article  CAS  PubMed  Google Scholar 

  25. Bylda C, Thiele R, Kobold U, Bujotzek A, Volmer DA. Rapid quantification of digitoxin and its metabolites using differential ion mobility spectrometry-tandem mass spectrometry. Anal Chem. 2015;87(4):2121–8. https://doi.org/10.1021/ac503187z.

    Article  CAS  PubMed  Google Scholar 

  26. Sidibe J, Varesio E, Hopfgartner G. Quantification of ghrelin and des-acyl ghrelin in human plasma by using cubic-selected reaction-monitoring LC-MS. Bioanalysis. 2014;6(10):1373–83. https://doi.org/10.4155/bio.14.108.

    Article  CAS  PubMed  Google Scholar 

  27. Lintonen TPI, Baker PRS, Suoniemi M, Ubhi BK, Koistinen KM, Duchoslav E, et al. Differential mobility spectrometry-driven shotgun lipidomics. Anal Chem. 2014;86(19):9662–9. https://doi.org/10.1021/ac5021744.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Yves LeBlanc and Dr. Brad Schneider (Sciex) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Hopfgartner.

Ethics declarations

The blood samples were provided by the Centre de Transfusion Sanguine, University Hospital Geneva, Geneva, Switzerland. The Human Research Act (HRA) does not apply for the anonymized blood samples analyzed in the present work (Art. 2 para. 2 let. b and c).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo-Veyrat, S., Hopfgartner, G. High-throughput liquid chromatography differential mobility spectrometry mass spectrometry for bioanalysis: determination of reduced and oxidized form of glutathione in human blood. Anal Bioanal Chem 410, 7153–7161 (2018). https://doi.org/10.1007/s00216-018-1318-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1318-x

Keywords

Navigation