Skip to main content

Advertisement

Log in

Graphene oxide-based biosensing platform for rapid and sensitive detection of HIV-1 protease

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

HIV-1 protease is essential for the life cycle of the human immunodeficiency virus (HIV), and is one of the most important clinical targets for antiretroviral therapies. In this work, we developed a graphene oxide (GO)-based fluorescence biosensing platform for the rapid, sensitive, and accurate detection of HIV-1 protease, in which fluorescent-labeled HIV-1 protease substrate peptide molecules were covalently linked to GO. In the absence of HIV-1 protease, fluorescein was effectively quenched by GO. In contrast, in the presence of HIV-1 protease, it would cleave the substrate peptide into short fragments, thus producing fluorescence. Based on this sensing strategy, HIV-1 protease could be detected at as low as 1.18 ng/mL. More importantly, the sensor could successfully detect HIV-1 protease in human serum. Such GO-based fluorescent sensors may find useful applications in many fields, including diagnosis of protease-related diseases, as well as sensitive and high-throughput screening of drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Cock KM, Jaffe HW, Curran JW. Reflections on 30 years of AIDS. Emerg Infect Dis. 2011;17:1044–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S, Blankson JN, et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 2013;9:e1003398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhimji A, Zaragoza AA, Live LS, Kelley SO. Electrochemical enzyme-linked immunosorbent assay featuring proximal reagent generation: detection of human immunodeficiency virus antibodies in clinical samples. Anal Chem. 2013;85:6813–9.

    Article  CAS  PubMed  Google Scholar 

  4. Yan N, O'Day E, Wheeler LA, Engelman A, Lieberman J. HIV DNA is heavily uracilated, which protects it from autointegration. Proc Natl Acad Sci U S A. 2011;108:9244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang DW, Zhao MM, He HQ, Guo SX. Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon. Anal Biochem. 2013;440:120–2.

    Article  CAS  PubMed  Google Scholar 

  6. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, et al. New real-time reverse transcriptase-initiated pcr assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41:4531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis DA, Tebbs IR, Daniels SI, Stahl SJ, Kaufman JD, Wingfield P, et al. Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach. Biochem J. 2009;419:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esseghaier C, Ng A, Zourob M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens Bioelectron. 2013;41(Supplement C):335–41.

    Article  CAS  PubMed  Google Scholar 

  9. Biswas P, Cella LN, Kang SH, Mulchandani A, Yates MV, Chen W. A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. Chem Commun. 2011;47:5259–61.

    Article  CAS  Google Scholar 

  10. Mahmoud KA, Hrapovic S, Luong JHT. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano. 2008;2:1051–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud KA, Luong JHT. A sensitive electrochemical assay for early detection of hiv-1 protease using ferrocene-peptide conjugate/Au nanoparticle/single walled carbon nanotube modified electrode. Anal Lett. 2010;43:1680–7.

    Article  CAS  Google Scholar 

  12. Wang L, Han Y, Zhou S, Wang G, Guan X. Real-time label-free measurement of HIV-1 protease activity by nanopore analysis. Biosens Bioelectron. 2014;62:158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183.

    Article  CAS  PubMed  Google Scholar 

  14. Yang C, Yin X, Huan SY, Chen L, Hu XX, Xiong MY, et al. Two-photon DNAzyme-gold nanoparticle probe for imaging intracellular metal ions. Anal Chem. 2018;90:3118–23.

    Article  CAS  PubMed  Google Scholar 

  15. Ma Q, Gao Z. A simple and ultrasensitive fluorescence assay for single-nucleotide polymorphism. Anal Bioanal Chem. 2018;410:3093–100.

    Article  CAS  PubMed  Google Scholar 

  16. Huang H, Li P, Zhang M, Yu Y, Huang Y, Gu H, et al. Graphene quantum dots for detecting monomeric amyloid peptides. Nano. 2017;9:5044–8.

    CAS  Google Scholar 

  17. Liu Q, Li N, Wang M, Wang L, Su X. A label-free fluorescent biosensor for the detection of protein kinase activity based on gold nanoclusters/graphene oxide hybrid materials. Anal Chim Acta. 2018;1013:71–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Zhang Q, Chu X, Chen T, Ge J, Yu R. Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew Chem Int Ed. 2011;50:7065–9.

    Article  CAS  Google Scholar 

  19. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A graphene platform for sensing biomolecules. Angew Chem Int Ed. 2009;48:4785–7.

    Article  CAS  Google Scholar 

  20. Zhang M, Yin BC, Wang XF, Ye BC. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun. 2011;47:2399–401.

    Article  CAS  Google Scholar 

  21. Feng D, Zhang Y, Feng T, Shi W, Li X, Ma H. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2. Chem Commun. 2011;47:10680–2.

    Article  CAS  Google Scholar 

  22. Perez MAS, Fernandes PA, Ramos MJ. Substrate recognition in HIV-1 protease: a computational study. J Phy Chem B. 2010;114:2525–32.

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282.

    Article  CAS  PubMed  Google Scholar 

  24. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol. 2008;3:101.

    Article  CAS  Google Scholar 

  25. Ingr M, Uhlíková T, Strísovský K, Majerová E, Konvalinka J. Kinetics of the dimerization of retroviral proteases: the “fireman’s grip” and dimerization. Protein Sci. 2003;12:2173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  CAS  Google Scholar 

  27. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130:10876–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrari L, Rovati L, Fabbri P, Pilati F. Disposable fluorescence optical pH sensor for near neutral solutions. Sensors. 2012;13:484–99.

    Article  CAS  PubMed  Google Scholar 

  29. Ratajczak K, Stobiecka M. Ternary interactions and energy transfer between fluorescein isothiocyanate, adenosine triphosphate, and graphene oxide nanocarriers. J Phys Chem B. 2017;121:6822–30.

    Article  CAS  PubMed  Google Scholar 

  30. Stobiecka M, Dworakowska B, Jakiela S, Lukasiak A, Chalupa A, Zembrzycki K. Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons. Sens Actuators B Chem. 2017;235:136–45.

    Article  CAS  Google Scholar 

  31. Windsor IW, Raines RT. Fluorogenic assay for inhibitors of HIV-1 protease with sub-picomolar affinity. Sci Rep. 2015;5:11286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutiérrez OA, Salas E, Hernández Y, Lissi EA, Castrillo G, Reyes O, et al. An immunoenzymatic solid-phase assay for quantitative determination of HIV-1 protease activity. Anal Biochem. 2002;307:18–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Institutes of Health (2R15GM110632-02) and National Science Foundation (1708596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyun Guan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, X., Roozbahani, G.M. et al. Graphene oxide-based biosensing platform for rapid and sensitive detection of HIV-1 protease. Anal Bioanal Chem 410, 6177–6185 (2018). https://doi.org/10.1007/s00216-018-1224-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1224-2

Keywords

Navigation