Skip to main content
Log in

A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A microfluidic-capillary-waveguide-coupled fiber-optic sensor was developed for colorimetric determination of hazardous nitrite based on the Griess–Ilosvay reaction. The sensor was modularly designed by use of a light-emitting diode as the light source, silica fiber as the light transmission element, and a capillary waveguide tube as the light reaction flow cell. With the light interacting with the azo dye generated by the Griess–Ilosvay reaction between nitrite and Griess reagents, nitrite could be determined by a colorimetric method according to Beer’s law. By use of the inexpensive and micro-sized elements mentioned above, the sensor provided a new low-cost and portable method for in situ and online measurement of nitrite. The sensor had a wide linear range for nitrite from 0.02 to 1.8 mg L−1 and a low detection limit of 7 μg L−1 (3σ), with a relative standard deviation of 0.37% (n = 10). With a low reagent demand of 200 μL, a short response time of 6.24 s, and excellent selectivity, the sensor is environmentally friendly and has been applied to nitrite determination in different water samples. The results were compared with those obtained by conventional spectrophotometry and ion chromatography, indicating the sensor’s potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Greer FR, Shannon M. Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics. 2005;116:784–6. doi:10.1542/peds.2005-1497.

    Article  Google Scholar 

  2. Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-Nitrosohemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380:221–6. doi:10.1038/380221a0.

    Article  CAS  Google Scholar 

  3. Brender JD, Olive JM, Felkner M, Suarez L, Marckwardt W, Hendricks KA. Dietary nitrites and nitrates, nitro stable drugs, and neural tube defects. Epidemiology. 2004;15(330):336. doi:10.1097/01.ede.0000121381.79831.7b.

    Google Scholar 

  4. Wolff IA, Wassennan AE. Nitrates, nitrites, and nitrosamines. Science. 1972;177:15–9. doi:10.1126/science.177.4043.15.

    Article  CAS  Google Scholar 

  5. Nelieu S, Shankar MV, Kerhoas L. Phototransformation of monuron induced by nitrate and nitrite ions in water: contribution of photonitration. J Photochem Photobiol A. 2008;193:1–9. doi:10.1016/j.jphotochem.2007.05.027.

    Article  CAS  Google Scholar 

  6. World Health Organization. Guidelines for drinking water quality, 3rd ed. Incorporating first and second addenda to third edition. Geneva: World Health Organization; 2008.

    Google Scholar 

  7. Environmental Protection Agency. National primary drinking water regulations: contaminant specific fact sheets, inorganic chemicals. Consumer version. Washington: Environmental Protection Agency; 2009.

    Google Scholar 

  8. Adarsh N, Shanmugasundaram M, Ramaiah D. Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem. 2013;85:10008–12. doi:10.1021/ac4031303.

    Article  CAS  Google Scholar 

  9. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, et al. Smart phone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem. 2015;86(19):9554–62. doi:10.1021/ac5019205.

    Article  Google Scholar 

  10. Jayawardane BM, Wei S, McKelvie ID, Kolev SD. Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem. 2014;86(15):7274–479. doi:10.1021/ac5013249.

    Article  CAS  Google Scholar 

  11. Daniel WL, Han MS, Lee J-S, Mirkin CA. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc. 2009;131(18):6362–3. doi:10.1021/ja901609k.

    Article  CAS  Google Scholar 

  12. Han J, Zhang C, Liu F, Liu B, Han M, Zou W, et al. Upconversion nanoparticles for ratiometric fluorescence detection of nitrite. Analyst. 2014;139(12):3032–8. doi:10.1039/c4an00402g.

    Article  CAS  Google Scholar 

  13. Tabares LC, Kostrz D, Elmalk A, Andreoni A, Dennison C, Aartsma TJ, et al. Fluorescence lifetime analysis of nitrite reductase from Alcaligenes xylosoxidans at the single-molecule level reveals the enzyme mechanism. Chem Eur J. 2011;17(43):12015–9. doi:10.1002/chem.201102063.

    Article  CAS  Google Scholar 

  14. Hong W-Y, Yang T-W, Wang C-M, Syu J-H, Lin Y-C, Meng H-F, et al. Conversion of absorption to fluorescence probe in solid-state sensor for nitric oxide and nitrite. Org Electron. 2013;14(4):1136–41. doi:10.1016/j.orgel.2012.12.011.

    Article  CAS  Google Scholar 

  15. Zhang K, Hu Y, Li G. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Talanta. 2013;2116:712–8. doi:10.1016/j.talanta.2013.07.019.

    Article  Google Scholar 

  16. Turdean GL, Szabo G. Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes - myoglobin modified electrode. Food Chem. 2015;2179:325–30. doi:10.1016/j.foodchem.2015.01.106.

    Article  Google Scholar 

  17. Wang Y, Laborda E, Compton RG. Electrochemical oxidation of nitrite: Kinetic, mechanistic and analytical study by square wave voltammetry. J Electroanal Chem. 2012;670:56–61. doi:10.1016/j.jelechem.2012.02.016.

    Article  CAS  Google Scholar 

  18. Zarate N, Pilar Ruiz M, Perez-Olmos R, Araujo AN, Montenegro MCBSM. Development of a sequential injection analysis system for the potentiometric determination of nitrite in meat products by using a Gran's plot method. Microchim Acta. 2009;165(1–2):117–22. doi:10.1007/s00604-008-0107-1.

    Article  CAS  Google Scholar 

  19. Labrador RH, Masot R, Alcaniz M, Baigts D, Soto J, Martinez-Manez R, et al. Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chem. 2010;122(3):864–70. doi:10.1016/j.foodchem.2010.02.049.

    Article  CAS  Google Scholar 

  20. Zazoua A, Dernane C, Kazane I, Belghobsi M, Errachid A, Jaffrezic-Renault N. Gold electrode functionalized with catalase for impedimetric detection of nitrite. Sensor Lett. 2011;9(6):2283–6. doi:10.1166/sl.2011.1815.

    Article  CAS  Google Scholar 

  21. Wang X, Adams E, Van Schepdael A. A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta. 2012;97:142–4. doi:10.1016/j.talanta.2012.04.008.

    Article  CAS  Google Scholar 

  22. Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H. Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron. 2014;51:379–85. doi:10.1016/j.bios.2013.07.056.

    Article  CAS  Google Scholar 

  23. Neel B, Asfhar MG, Crespo GA, Pawlak M, Dorokhin D, Bakker E. Nitrite-selective electrode based on cobalt(II) tert-butylsalophen ionophore. Electroanalysis. 2014;26(3):473–80. doi:10.1002/elan.201300607.

    Article  CAS  Google Scholar 

  24. Wang L, Tricard S, Cao L, Liang Y, Zhao J, Fang J, et al. Prussian blue/1-butyl-3-methylimidazolium tetrafluoroborate Graphite felt electrodes for efficient electrocatalytic determination of nitrite. Sens Actuators B. 2015;214:70–5. doi:10.1016/j.snb.2015.03.009.

    Article  CAS  Google Scholar 

  25. Wang N, Wang RQ, Zhu Y. A novel ion chromatography cycling-column-switching system for the determination of low-level chlorate and nitrite in high salt matrices. J Hazard Mater. 2012;2235:123–7. doi:10.1016/j.jhazmat.2012.07.029.

    Article  Google Scholar 

  26. Tsikas D, Boehmer A, Mitschke A. Gas chromatography-mass spectrometry analysis of nitrite in biological fluids without derivatization. Anal Chem. 2010;82(12):5384–90. doi:10.1021/ac1008354.

    Article  CAS  Google Scholar 

  27. Tsikas D, Schwarz A, Stichtenoth DO. Simultaneous measurement of [15N]nitrate and [15N]nitrite enrichment and concentration in urine by gas chromatography mass spectrometry as pentafluorobenzyl derivatives. Anal Chem. 2010;82(6):2585–7. doi:10.1021/ac902970m.

    Article  CAS  Google Scholar 

  28. He L, Zhang K, Wang C, Luo X, Zhang S. Effective indirect enrichment and determination of nitrite ion in water and biological samples using ionic liquid-dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. J Chromatogr A. 2011;1218(23):3595–600. doi:10.1016/j.chroma.2011.04.014.

    Article  CAS  Google Scholar 

  29. Li Y, Whitaker JS, McCarty CL. Reversed-phase liquid chromatography/electrospray ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in water. J Chromatogr A. 2011;1218(3):476–83. doi:10.1016/j.chroma.2010.11.073.

    Article  CAS  Google Scholar 

  30. Lin Z, Xue W, Chen H, Lin J-M. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83(21):8245–51. doi:10.1021/ac202039h.

    Article  CAS  Google Scholar 

  31. Sui Y, Deng M, Xu S, Chen F. Gold nanocluster-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of nitrite. RSC Adv. 2015;5(18):13495–501. doi:10.1039/c4ra17164k.

    Article  CAS  Google Scholar 

  32. Dong S, Guan W, Lu C. Quantum dots in organo-modified layered double hydroxide framework-improved peroxynitrous acid chemiluminescence for nitrite sensing. Sens Actuators B. 2013;188:597–602. doi:10.1016/j.snb.2013.07.060.

    Article  CAS  Google Scholar 

  33. Czugala M, Fay C, O'Connor NE, Corcoran B, Benito-Lopez F, Diamond D. Portable integrated microfluidic analytical platform for the monitoring and detection of nitrite. Talanta. 2013;116:997–1004. doi:10.1016/j.talanta.2013.07.058.

    Article  CAS  Google Scholar 

  34. Sun J, Zhang X, Broderick M, Fein H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors. 2003;3:276–84. doi:10.3390/s30800276.

    Article  CAS  Google Scholar 

  35. Chang I-H, Tulock JJ, Liu J, Kim W-S, Cannon Jr DM, Lu Y, et al. Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ Sci Technol. 2005;39:3756–61. doi:10.1021/es040505f.

    Article  CAS  Google Scholar 

  36. Austin DE. Miniaturization of analytical systems: principles, designs and applications. J Am Chem Soc. 2010;132:6864–5. doi:10.1021/ja102715s.

    Article  CAS  Google Scholar 

  37. Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and "NMR on a chip" for chemistry, biochemistry, and industry. Chem Rev. 2014;114:5641–94. doi:10.1021/cr400063g.

    Article  CAS  Google Scholar 

  38. Merkoçi A, Kutter JP. Analytical miniaturization and nanotechnologies. Lab Chip. 2012;12:1915–6. doi:10.1039/C2LC90040H.

    Article  Google Scholar 

  39. Lin S, Lee EK, Nguyen N, Khine M. Thermally-induced miniaturization for micro- and nanofabrication: progress and updates. Lab Chip. 2014;14:3475–88. doi:10.1039/C4LC00528G.

    Article  CAS  Google Scholar 

  40. Chatterjee A, Khandare DG, Saini P, Chattopadhyay A, Majik MS, Banerjee M. Amine functionalized tetraphenylethylene: a novel aggregation-induced emission based fluorescent chemodosimeter for nitrite and nitrate ions. RSC Adv. 2015;5(40):31479–84. doi:10.1039/c4ra14765k.

    Article  CAS  Google Scholar 

  41. Zhang R, Wang Y, Yu L-P. Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor. J Hazard Mater. 2014;280:46–54. doi:10.1016/j.jhazmat.2014.07.032.

    Article  CAS  Google Scholar 

  42. Wang S-Y, Ma J-Y, Li Z-J, Su HQ, Alkurd NR, Zhou W-L, et al. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J Hazard Mater. 2015;285:368–74. doi:10.1016/j.jhazmat.2014.12.014.

    Article  CAS  Google Scholar 

  43. da Silva PS, Gasparini BC, Magosso HA, Spinelli A. Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers. J Hazard Mater. 2014;273:70–7. doi:10.1016/j.jhazmat.2014.03.032.

    Article  Google Scholar 

  44. Lee I, Oh W-K, Jang J. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection. J Hazard Mater. 2013;252:186–91. doi:10.1016/j.jhazmat.2013.03.003.

    Article  Google Scholar 

  45. Zhong N, Liao Q, Zhu X, Zhao M. Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor. Anal Chem. 2014;86:9278–85. doi:10.1021/ac502417a.

    Article  CAS  Google Scholar 

  46. Zhong N, Liao Q, Zhu X, Chen R. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor. Anal Chem. 2014;86:3994–4001. doi:10.1021/ac500353y.

    Article  CAS  Google Scholar 

  47. Ton X-A, Acha V, Bonomi P, Bui BTS, Haupt K. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosens Bioelectron. 2015;64:359–66. doi:10.1016/j.bios.2014.09.017.

    Article  CAS  Google Scholar 

  48. Keller BK, DeGrandpre MD, Palmer CP. Waveguiding properties of fiber-optic capillaries for chemical sensing applications. Sens Actuators B. 2007;125:360–71. doi:10.1016/j.snb.2007.02.022.

    Article  CAS  Google Scholar 

  49. Bao B, Melo L, Davies B, Fadaei H, Sinton D, Wild P. Detecting supercritical CO2 in brine at sequestration pressure with an optical fiber sensor. Environ Sci Technol. 2013;47:306–13. doi:10.1021/es303596a.

    Article  CAS  Google Scholar 

  50. Bagshaw EA, Wadham JL, Eveness J, Fountain AG, Telling J. Determination of dissolved oxygen in the cryosphere: a comprehensive laboratory and field evaluation of fiber optic sensors. Environ Sci Technol. 2011;45:700–5. doi:10.1021/es102571j.

    Article  CAS  Google Scholar 

  51. Lee ST, George NA, Kumar PS, Radhakrishnan P, Nampoori VPN, Vallabhan CPG. Chemical sensing with microbent optical fiber. Opt Lett. 2001;26:1541–3. doi:10.1364/OL.26.001541.

    Article  Google Scholar 

  52. Bulatov AV, Petrova AV, Vishnikin AB, Moskvin AL, Moskvin LN. Stepwise injection spectrophotometric determination of epinephrine. Talanta. 2012;96:62–7. doi:10.1016/j.talanta.2012.03.059.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) (Grant No. PLN 1313), the National Natural Science Foundation of China (grant no. 51404203), the Foundation of Youth Science and Technology Innovation Team of Sichuan Province (grant no. 2015TD0007), and the Foundation of Science and Technology Department of Sichuan Province (grant no. 2014009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Wang, CJ., Tao, T. et al. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide. Anal Bioanal Chem 408, 3413–3423 (2016). https://doi.org/10.1007/s00216-016-9415-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9415-1

Keywords

Navigation