Skip to main content
Log in

Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper presents an optimization of the pharmaceutical Polar Organic Chemical Integrative Sampler (POCIS-200) under controlled laboratory conditions for the sampling of acidic (2,4-dichlorophenoxyacetic acid (2,4-D), acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid, bentazon, dicamba, mesotrione, and metsulfuron) and polar (atrazine, diuron, and desisopropylatrazine) herbicides in water. Indeed, the conventional configuration of the POCIS-200 (46 cm2 exposure window, 200 mg of Oasis® hydrophilic lipophilic balance (HLB) receiving phase) is not appropriate for the sampling of very polar and acidic compounds because they rapidly reach a thermodynamic equilibrium with the Oasis HLB receiving phase. Thus, we investigated several ways to extend the initial linear accumulation. On the one hand, increasing the mass of sorbent to 600 mg resulted in sampling rates (R s s) twice as high as those observed with 200 mg (e.g., 287 vs. 157 mL day−1 for acetochlor ESA). Although detection limits could thereby be reduced, most acidic analytes followed a biphasic uptake, proscribing the use of the conventional first-order model and preventing us from estimating time-weighted average concentrations. On the other hand, reducing the exposure window (3.1 vs. 46 cm2) allowed linear accumulations of all analytes over 35 days, but R s s were dramatically reduced (e.g., 157 vs. 11 mL day−1 for acetochlor ESA). Otherwise, the observation of biphasic releases of performance reference compounds (PRC), though mirroring acidic herbicide biphasic uptake, might complicate the implementation of the PRC approach to correct for environmental exposure conditions.

POCIS and μPOCIS in river media

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 67:3391–3400

    Article  CAS  Google Scholar 

  2. Huckins JN, Manuweera GK, Petty JD, Mackay D, Lebo JA (1993) Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ Sci Technol 27:2489–2496

    Article  CAS  Google Scholar 

  3. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648

    Article  CAS  Google Scholar 

  4. Kingston JK, Greenwood R, Mills GA, Morrison GM, Persson LB (2000) Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. J Environ Monit 2:487–495

    Article  CAS  Google Scholar 

  5. Fung N, Ikesaki T (1991) Determination of nine acidic herbicides in water and soil by gas chromatograpy using an electron-capture detector. J Chromatogr A 537:385–395

    Article  Google Scholar 

  6. Beaudegnies R, Edmunds AJF, Fraser TEM, Hall RG, Hawkes TR, Mitchell G, Schaetzer J, Wendeborn S, Wibley J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorg Med Chem 17:4134–4152

    Article  CAS  Google Scholar 

  7. Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732

    Article  Google Scholar 

  8. Wells MJM, Yu LZ (2000) Solid-phase extraction of acidic herbicides. J Chromatogr A 885:237–250

    Article  CAS  Google Scholar 

  9. Roubeix V, Fauvelle V, Tison-Rosebery J, Mazzella N, Coste M, Delmas F (2012) Assessing the impact of chloroacetanilide herbicides and their metabolites on periphyton in the Leyre River (SW France) via short term growth inhibition tests on autochthonous diatoms. J Environ Monit 14:1655–1663

    Article  CAS  Google Scholar 

  10. Hladik ML, Hsiao JJ, Roberts AL (2005) Are neutral chloroacetamide herbicide degradates of potential environmental concern? Analysis and occurrence in the Upper Chesapeake Bay. Environ Sci Technol 39:6561–6574

    Article  CAS  Google Scholar 

  11. Postle JK, Rheineck BD, Allen PE, Baldock JO, Cook CJ, Zogbaum R, Vandenbrook JP (2004) Chloroacetanilide herbicide metabolites in Wisconsin groundwater: 2101 Survey results. Environ Sci Technol 38:5339–5343

    Article  CAS  Google Scholar 

  12. Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler—a critical review. Environ Toxicol Chem 31:2724–2738

    Article  CAS  Google Scholar 

  13. Morin N, Miège C, Coquery M, Randon J (2012) Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. Trends Anal Chem 36:144–175

    Article  CAS  Google Scholar 

  14. Mazzella N, Dubernet J-F, Delmas F (2007) Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers: application to the passive sampling of the polar herbicides in aquatic environments. J Chromatogr A 1154:42–51

    Article  CAS  Google Scholar 

  15. Harman C, Reid M, Thomas KV (2011) In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year-long assessment of community drug usage. Environ Sci Technol 45:5676–5682

    Article  CAS  Google Scholar 

  16. Fauvelle V, Mazzella N, Delmas F, Madarassou K, Eon M, Budzinski H (2012) Use of mixed-mode ion exchange sorbent for the passive sampling of organic acids by polar organic chemical integrative sampler (POCIS). Environ Sci Technol 46:13344–13353

    Article  CAS  Google Scholar 

  17. Kaserzon SL, Kennedy K, Hawker DW, Thompson J, Carter S, Roach AC, Booij K, Mueller JF (2012) Development and calibration of a passive sampler for perfluorinated alkyl carboxylates and sulfonates in water. Environ Sci Technol 46:4985–4993

    Article  CAS  Google Scholar 

  18. Li H, Helm PA, Paterson G, Metcalfe CD (2011) The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere 83:271–280

    Article  CAS  Google Scholar 

  19. Górecki T, Yu X, Pawliszyn J (1999) Theory of analyte extraction by selected porous polymer SPME fibres. Analyst 124:643–649

    Article  Google Scholar 

  20. Bäuerlein PS, Mansell JE, Ter Laak TL, De Voogt P (2012) Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: Which functional group governs sorption? Environ Sci Technol 46:954–961

    Article  CAS  Google Scholar 

  21. Lissalde S, Mazzella N, Fauvelle V, Delmas F, Mazellier P, Legube B (2011) Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J Chromatogr A 1218:1492–1502

    Article  CAS  Google Scholar 

  22. Camilleri J, Morin N, Miège C, Coquery M, Cren-Olivé C (2012) Determination of the uptake and release rates of multifamilies of endocrine disruptor compounds on the polar C18 Chemcatcher. Three potential performance reference compounds to monitor polar pollutants in surface water by integrative sampling. J Chromatogr A 1237:37–45

    Article  CAS  Google Scholar 

  23. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552

    Article  CAS  Google Scholar 

  24. Xing B, Pignatello JJ, Gigliotti B (1996) Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ Sci Technol 30:2432–2440

    Article  CAS  Google Scholar 

  25. Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31:792–799

    Article  CAS  Google Scholar 

  26. Charlestra L, Amirbahman A, Courtemanch DL, Alvarez DA, Patterson H (2012) Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions. Environ Pollut 169:98–104

    Article  CAS  Google Scholar 

  27. Togola A, Budzinski H (2007) Development of polar organic integrative samplers for analysis of pharmaceuticals in aquatic systems. Anal Chem 79:6734–6741

    Article  CAS  Google Scholar 

  28. Mazzella N, Lissalde S, Moreira S, Delmas F, Mazellier P, Huckins JN (2010) Evaluation of the use of performance reference compounds in an oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ Sci Technol 44:1713–1719

    Article  CAS  Google Scholar 

  29. Shaw M, Eaglesham G, Mueller JF (2009) Uptake and release of polar compounds in SDB-RPS Empore™ disks; implications for their use as passive samplers. Chemosphere 75:1–7

    Article  CAS  Google Scholar 

  30. Vallejo A, Prieto A, Moeder M, Usobiaga A, Zuloaga O, Etxebarria N, Paschke A (2013) Calibration and field test of the polar organic chemical integrative samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC). Water Res 47:2851–2862

    Article  CAS  Google Scholar 

  31. Booij K, Sleiderink HM, Smedes F (1998) Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ Toxicol Chem 17:1236–1245

    Article  CAS  Google Scholar 

  32. Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Cranor WL, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36:85–91

    Article  CAS  Google Scholar 

  33. Ibrahim I, Togola A, Gonzalez C (2013) Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res Int 20:3679–3687

    Article  CAS  Google Scholar 

  34. Morin N, Camilleri J, Cren-Olivé C, Coquery M, Miège C (2013) Determination of uptake kinetics and sampling rates for 56 organic micropollutants using “pharmaceutical” POCIS. Talanta 109:61–73

    Article  CAS  Google Scholar 

  35. Alvarez DA (1999) Development of an integrative sampling device for hydrophilic organic contaminants in aquatic environments, University of Missouri-Columbia

  36. Rafferty J, Zhang L, Siepmann J, Schure M (2007) Retention mechanism in reversed-phase liquid chromatography: a molecular perspective. Anal Chem 79:6551–6558

    Article  CAS  Google Scholar 

  37. Belles A, Pardon P, Budzinski H (2013) Development of an adapted version of polar organic chemical integrative samplers (POCIS-Nylon). Anal Bioanal Chem 406(4):1099–1110

    Article  CAS  Google Scholar 

  38. Chen CE, Zhang H, Jones KC (2012) A novel passive water sampler for in situ sampling of antibiotics. J Environ Monit 14:1523–1530

    Article  CAS  Google Scholar 

  39. Kim-Tiam S, Morin S, Pesce S, Feurtet-Mazel A, Moreira A, Gonzalez P, Mazzella N (2014) Environmental effects of realistic pesticide mixtures on natural biofilm communities with different exposure histories. Sci Total Environ 473–474:496–506

    Article  CAS  Google Scholar 

  40. Harman C, Allan IJ, Bäuerlein PS (2011) The challenge of exposure correction for polar passive samplers the PRC and the POCIS. Environ Sci Technol 45:9120–9121

    Article  CAS  Google Scholar 

  41. Kaserzon SL, Hawker DW, Booij K, O’Brien DS, Kennedy K, Vermeirssen ELM, Mueller JF (2014) Passive sampling of perfluorinated chemicals in water: in situ calibration. Environ Pollut 186:98–103

    Article  CAS  Google Scholar 

  42. Belles A, Tapie N, Pardon P, Budzinski H (2014) Development of the performance reference compound approach for the calibration of “polar organic chemical integrative sampler” (POCIS). Anal Bioanal Chem 406(4):1131–1140

    Article  CAS  Google Scholar 

  43. Chen CE, Zhang H, Ying GG, Jones KC (2013) Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters. Environ Sci Technol 47:13587–13593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Region Aquitaine (OSQUAR project), FEDER (OSQUAR project), ANR RIPOST, and ANR Potomac for financial support. The authors are also grateful to Brigitte Delest, Alexis Beven, and Sébastien Boutry for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Mazzella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

μPOCIS structure, residue study of monophasic, and biphasic models, photos of effective exposure surface area in POCIS, mass parameters for acidic herbicide analysis, accumulation parameters for POCIS-200 and POCIS-600. (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauvelle, V., Mazzella, N., Belles, A. et al. Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides. Anal Bioanal Chem 406, 3191–3199 (2014). https://doi.org/10.1007/s00216-014-7757-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7757-0

Keywords

Navigation