Skip to main content

Advertisement

Log in

Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lipids are a major component of heart tissue and perform several important functions such as energy storage, signaling, and as building blocks of biological membranes. The heart lipidome is quite diverse consisting of glycerophospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), cardiolipins (CLs), and glycerolipids, mainly triacylglycerols (TAGs). In this study, mass spectrometry imaging (MSI) enabled by matrix implantation of ionized silver nanoparticles (AgNP) was used to map several classes of lipids in heart tissue. The use of AgNP matrix implantation was motivated by our previous work showing that implantation doses of only 1014/cm2 of 2 nm gold nanoparticulates into the first 10 nm of the near surface of the tissue enabled detection of most brain lipids (including neutral lipid species such as cerebrosides) more efficiently than traditional organic MALDI matrices. Herein, a similar implantation of 500 eV AgNP across the entire heart tissue section results in a quick, reproducible, solvent-free, uniform matrix concentration of 6 nm AgNP residing near the tissue surface. MALDI-MSI analysis of either positive or negative ions produce high-quality images of several heart lipid species. In negative ion mode, 24 lipid species [16 PEs, 4 PIs, 1 PG, 1 CL, 2 sphingomyelins (SMs)] were imaged. Positive ion images were also obtained from 29 lipid species (10 PCs, 5 PEs, 5 SMs, 9 TAGs) with the TAG species being heavily concentrated in vascular regions of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833

    Article  CAS  Google Scholar 

  2. Amstalden van Hove ER, Smith DF, Heeren RM (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954

    Article  CAS  Google Scholar 

  3. Seeley EH, Schwamborn K, Caprioli RM (2013) Imaging of intact tissue sections: moving beyond the microscope. J Biol Chem 286:25459–25466

    Article  Google Scholar 

  4. Jackson SN, Wang H-YJ, Woods AS (2005) Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem 77:4523–4527

    Article  CAS  Google Scholar 

  5. Woods AS, Wang HY, Jackson SN (2007) A snapshot of tissue glycerolipids. Curr Pharm Des 13:3344–3356

    Article  CAS  Google Scholar 

  6. Jackson SN, Woods AS (2009) Direct profiling of tissue lipids by MALDI-TOFMS. J Chromatogr B Anal Technol Biomed Life Sci 877:2822–2829

    Article  CAS  Google Scholar 

  7. Goto-Inoue N, Hayasaka T, Zaima N, Setou M (2011) Imaging mass spectrometry for lipidomics. Biochim Biophys Acta 1811:961–969

    Article  CAS  Google Scholar 

  8. Fernández JA, Ochoa B, Fresnedo O, Giralt MT, Rodríguez-Puertas R (2011) Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics. Anal Bioanal Chem 401:29–51

    Article  Google Scholar 

  9. Gode D, Volmer DA (2013) Lipid imaging by mass spectrometry—a review. Analyst 138:1289–1315

    Article  CAS  Google Scholar 

  10. Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16:1654–1659

    Article  CAS  Google Scholar 

  11. Puolitaival SM, Burnum KE, Cornett DS, Caprioli RM (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19:882–886

    Article  CAS  Google Scholar 

  12. Garrett TJ, Prieto-Conway MC, Kovtoun V, Bui H, Izgarian N, Stafford G, Yost RA (2007) Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. Int J Mass Spectrom 260:166–176

    Article  CAS  Google Scholar 

  13. Chen Y, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, Merrill AH Jr, Sullards MC (2008) Imaging MALDI Mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80:2780–2788

    Article  CAS  Google Scholar 

  14. Aerni H-R, Cornett DS, Caprioli RM (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78:827–834

    Article  CAS  Google Scholar 

  15. Baluya DL, Garrett TJ, Yost RA (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem 79:6862–6867

    Article  CAS  Google Scholar 

  16. Delvolve AM, Woods AS (2011) Optimization of automated matrix deposition for biomolecular mapping using a spotter. J Mass Spectrom 46:1046–1050

    Article  CAS  Google Scholar 

  17. Murphy RC, Hankin JA, Barkley RM, Zemski Berry KA (2011) MALDI imaging of lipids after matrix sublimation/deposition. Biochim Biophys Acta 1811:970–975

    Article  CAS  Google Scholar 

  18. Novikov A, Caroff M, Della-Negra S, Lebeyec Y, Pautrat M, Schultz JA, Tempez A, Wang HY, Jackson SN, Woods AS (2004) Matrix-implanted laser desorption/ionization mass spectrometry. Anal Chem 76:7288–7293

    Article  CAS  Google Scholar 

  19. Tempez A, Ugarov M, Egan T, Schultz JA, Novikov A, Della-Negra S, Lebeyec Y, Pautrat M, Caroff M, Smentkowski VS, Wang HY, Jackson SN, Woods AS (2004) Matrix implanted laser desorption ionization (MILDI) combined with ion mobility-mass spectrometry for bio-surface analysis. J Proteome Res 4:540–545

    Article  Google Scholar 

  20. Colsch B, Jackson SN, Dutta S, Woods AS (2011) Molecular microscopy of brain gangliosides: illustrating their distribution in hippocampal cell layers. ACS Chem Neurosci 2:213–222

    Article  CAS  Google Scholar 

  21. Carter CL, McLeod CW, Bunch J (2011) Imaging of phospholipids in formalin fixed rat brain sections by matrix assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 22:1991–1998

    Article  CAS  Google Scholar 

  22. Cerruti CD, Benabdellah F, Laprevote O, Touboul D, Brunelle A (2012) MALDI imaging and structural analysis of rat brain lipid negative ions with 9-aminoacridine matrix. Anal Chem 84:2164–2171

    Article  CAS  Google Scholar 

  23. Astigarraga E, Barreda-Gomez G, Lombardero L, Fresnedo O, Castano F, Giralt MT, Ochoa B, Rodriguez-Puertas R, Fernandez JA (2008) Profiling and imaging of lipids on brain and liver tissue by matrix-assisted laser desorption/ionization mass spectrometry using 2-mercaptobenzothiazole as a matrix. Anal Chem 80:9105–9114

    Article  CAS  Google Scholar 

  24. Jackson SN, Ugarov M, Egan T, Post JD, Langlais D, Schultz JA, Woods AS (2007) MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom 42:1093–1098

    Article  CAS  Google Scholar 

  25. Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79:2373–2385

    Article  CAS  Google Scholar 

  26. Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766

    Article  CAS  Google Scholar 

  27. Hayasaka T, Goto-Inoue N, Zaima N, Shrivas K, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M (2010) Imaging mass spectrometry with silver nanoparticles reveals the distribution of fatty acids in mouse retinal sections. J Am Soc Mass Spectrom 21:1446–1454

    Article  CAS  Google Scholar 

  28. Goto-Inoue N, Hayasaka T, Zaima N, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M (2010) The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J Am Soc Mass Spectrom 21:1940–1943

    CAS  Google Scholar 

  29. Muller L, Barbacci D, Post J, Baldwin K, Lewis EK, McCully MI, Schultz JA, Woods AS (2012) Identification of lipids using silver nanoparticles (AgNP) as a matrix for laser desorption/ionization imaging. Proceedings of the 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vancouver, Canada

  30. Wang H-YJ, Jackson SN, Woods AS (2007) Direct MALDI-MS analysis of cardiolipin from rat organs sections. J Am Soc Mass Spectrom 18:567–577

    Article  CAS  Google Scholar 

  31. Chaurand P, Cornett DS, Angel PM, Caprioli RM (2011) From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 10:1–11

    Article  Google Scholar 

  32. Menger RF, Stutts WL, Anbukumar DS, Bowden JA, Ford DA, Yost RA (2012) MALDI mass spectrometric imaging of cardiac tissue following myocardial infarction in a rat coronary artery ligation model. Anal Chem 84:1117–1125

    Article  CAS  Google Scholar 

  33. Jackson SN, Wang H-YJ, Woods AS, Ugarov M, Egan T, Schultz JA (2005) Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS. J Am Soc Mass Spectrom 16:133–138

    Article  CAS  Google Scholar 

  34. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  35. Bodennec J, Koul O, Aguado I, Brichon G, Zwingelstein G, Portoukalian J (2000) A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J Lipid Res 41:1524–1531

    CAS  Google Scholar 

  36. Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW (2008) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem 80:7576–7585

    Article  CAS  Google Scholar 

  37. Sugiura Y, Setou M (2009) Selective imaging of positively charged polar and nonpolar lipids by optimizing matrix solution composition. Rapid Commun Mass Spectrom 23:3269–3278

    Article  CAS  Google Scholar 

  38. Al-Saad KA, Zabrouskov V, Siems WF, Knowles NR, Hannan RM, Hill HH Jr (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of lipids: ionization and prompt fragmentation patterns. Rapid Commun Mass Spectrom 17:87–96

    Article  CAS  Google Scholar 

  39. Gidden J, Liyanage R, Durham B, Lay JO Jr (2007) Reducing fragmentation observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of triacylglycerols in vegetable oils. Rapid Commun Mass Spectrom 21:1951–1957

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institute on Drug Abuse, NIH. The authors acknowledge Dr. Mari Prieto and Thermo Fisher Corporation for technical and instrumentation advices. Ionwerks and the University of Pittsburgh gratefully acknowledge ARRA support through NIDA phase II SBIR grant 1RC3DA031431-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina S. Woods.

Additional information

Published in the topical collection Biomedical Mass Spectrometry with guest editors Mitsutoshi Setou, Toshimitsu Niwa, and Akira Ishii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, S.N., Baldwin, K., Muller, L. et al. Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Anal Bioanal Chem 406, 1377–1386 (2014). https://doi.org/10.1007/s00216-013-7525-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7525-6

Keywords

Navigation