Skip to main content
Log in

Gas chromatography–tandem mass spectrometry analysis of 52 monohydroxylated metabolites of polycyclic aromatic hydrocarbons in hairs of rats after controlled exposure

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method based on gas chromatography–tandem mass spectrometry after derivatization with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide was developed for the analysis of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in hair. The method focused on 52 target compounds corresponding to two- to six-ring monohydroxylated metabolites of polycyclic aromatic hydrocarbons (PAHs). The limits of quantification ranged from 0.2 to 50 pg mg−1. The method was then applied to the analysis of hair samples collected from rats exposed to 12 PAHs at 0.01, 0.1, and 1 mg kg−1, by intraperitoneal injection, for 28 days. The results of this study confirm that these metabolites can be incorporated in hair after intraperitoneal administration of the corresponding parent compound. Only 20 of the 52 metabolites were actually detected in hair samples and corresponded to nine parent PAHs. The mean concentrations of OH-PAHs in rat hair samples exposed to PAHs at 1 mg kg−1 ranged from 0.6 ± 0.2 pg mg−1 for 8-hydroxybenzo[b]fluoranthene to 6.7 ± 1.0 pg mg−1 for 1-hydroxypyrene. The results also demonstrated that hair pigmentation has no influence on the concentration of most OH-PAHs. This animal experiment confirmed the incorporation of PAH metabolites in hair and demonstrated that the method was sufficiently sensitive to detect low levels of exposure to PAHs. These results confirmed the usefulness of hair analysis in the biomonitoring of human exposure to PAHs.

Analysis of 52 monohydroxylated polyccyclic aromatic hydrocarbons in a supplemented hair sample by GC-EI-MS/MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chetiyanukornkul T, Toriba A, Kameda T, Tang N, Hayakawa K (2006) Simultaneous determination of urinary hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene and pyrene as multiple biomarkers of exposure to polycyclic aromatic hydrocarbons. Anal Bioanal Chem 386(3):712–718. doi:10.1007/s00216-006-0628-6

    Article  CAS  Google Scholar 

  2. Elovaara E, Mikkola J, Makela M, Paldanius B, Priha E (2006) Assessment of soil remediation workers’ exposure to polycyclic aromatic hydrocarbons (PAH): biomonitoring of naphthols, phenanthrols, and 1-hydroxypyrene in urine. Toxicol Lett 162(2–3):158–163. doi:10.1016/j.toxlet.2005.09.028

    Article  CAS  Google Scholar 

  3. Grainger J, Huang W, Patterson DG Jr, Turner WE, Pirkle J, Caudill SP, Wang RY, Needham LL, Sampson EJ (2006) Reference range levels of polycyclic aromatic hydrocarbons in the US population by measurement of urinary monohydroxy metabolites. Environ Res 100(3):394–423. doi:10.1016/j.envres.2005.06.004

    Article  CAS  Google Scholar 

  4. Vaananen V, Elovaara E, Nykyri E, Santonen T, Heikkila P (2006) Road pavers’ occupational exposure to asphalt containing waste plastic and tall oil pitch. J Environ Monit 8(1):89–99. doi:10.1039/b513505b

    Article  Google Scholar 

  5. Bouchard M, Normandin L, Gagnon F, Viau C, Dumas P, Gaudreau E, Tremblay C (2009) Repeated measures of validated and novel biomarkers of exposure to polycyclic aromatic hydrocarbons in individuals living near an aluminum plant in Quebec, Canada. J Toxicol Environ Health A 72(23):1534–1549. doi:10.1080/15287390903129481

    Article  CAS  Google Scholar 

  6. Bouchard M, Thuot R, Carrier G, Viau C (2002) Urinary excretion kinetics of 1-hydroxypyrene in rats subchronically exposed to pyrene or polycyclic aromatic hydrocarbon mixtures. J Toxicol Environ Health A 65(16):1195–1209. doi:10.1080/152873902760125408

    Article  CAS  Google Scholar 

  7. Bouchard M, Viau C (1996) Urinary excretion kinetics of pyrene and benzo(a)pyrene metabolites following intravenous administration of the parent compounds or the metabolites. Toxicol Appl Pharmacol 139(2):301–309. doi:10.1006/taap.1996.0169

    Article  CAS  Google Scholar 

  8. Chahin A, Guiavarc’h YP, Dziurla MA, Toussaint H, Feidt C, Rychen G (2008) 1-Hydroxypyrene in milk and urine as a bioindicator of polycyclic aromatic hydrocarbon exposure of ruminants. J Agric Food Chem 56(5):1780–1786

    Article  CAS  Google Scholar 

  9. Chien YC, Yeh CT (2010) Amounts and proportion of administered pyrene dose excreted as urinary 1-hydroxypyrene after dietary exposure to polycyclic aromatic hydrocarbons. Arch Toxicol 84(10):767–776. doi:10.1007/s00204-010-0570-4

    Article  CAS  Google Scholar 

  10. Chien YC, Yeh CT (2012) Excretion kinetics of urinary 3-hydroxybenzo[a]pyrene following dietary exposure to benzo[a]pyrene in humans. Arch Toxicol 86(1):45–53. doi:10.1007/s00204-011-0727-9

    Article  CAS  Google Scholar 

  11. Heredia-Ortiz R, Bouchard M, Marie-Desvergne C, Viau C, Maitre A (2011) Modeling of the internal kinetics of benzo(a)pyrene and 3-hydroxybenzo(a)pyrene biomarker from rat data. Toxicol Sci 122(2):275–287. doi:10.1093/toxsci/kfr135

    Article  CAS  Google Scholar 

  12. Hollender J, Koch B, Dott W (2000) Biomonitoring of environmental polycyclic aromatic hydrocarbon exposure by simultaneous measurement of urinary phenanthrene, pyrene and benzo[a]pyrene hydroxides. J Chromatogr B: Biomed Sci Appl 739(1):225–229

    Article  CAS  Google Scholar 

  13. Jacob J, Grimmer G (1996) Metabolism and excretion of polycyclic aromatic hydrocarbons in rat and in human. Cent Eur J Public Health 4(Suppl):33–39

    CAS  Google Scholar 

  14. Marie C, Bouchard M, Heredia-Ortiz R, Viau C, Maitre A (2010) A toxicokinetic study to elucidate 3-hydroxybenzo(a)pyrene atypical urinary excretion profile following intravenous injection of benzo(a)pyrene in rats. J Appl Toxicol 30(5):402–410. doi:10.1002/jat.1511

    CAS  Google Scholar 

  15. Ariese F, Verkaik M, Hoornweg GP, van de Nesse RJ, Jukema-Leenstra SR, Hofstraat JW, Gooijer C, Velthorst NH (1994) Trace analysis of 3-hydroxy benzo[a]pyrene in urine for the biomonitoring of human exposure to polycyclic aromatic hydrocarbons. J Anal Toxicol 18(4):195–204

    Article  CAS  Google Scholar 

  16. Forster K, Preuss R, Rossbach B, Bruning T, Angerer J, Simon P (2008) 3-hydroxybenzo[a]pyrene in the urine of workers with occupational exposure to polycyclic aromatic hydrocarbons in different industries. Occup Environ Med 65(4):224–229. doi:10.1136/oem.2006.030809

    Article  CAS  Google Scholar 

  17. Gendre C, Lafontaine M, Morele Y, Payan JP, Simon P (2002) Relationship between urinary levels of 1-hydroxypyrene and 3-hydroxybenzo[a]pyrene for workers exposed to ploycyclic aromatic hydrocarbons. Polycycl Aromat Compd 22:761–769

    Article  CAS  Google Scholar 

  18. Hansen AM, Mathiesen L, Pedersen M, Knudsen LE (2008) Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies—a review. Int J Hyg Environ Health 211:471–503

    Article  CAS  Google Scholar 

  19. Viau C, Diakite A, Ruzgyte A, Tuchweber B, Blais C, Bouchard M, Vyskocil A (2002) Is 1-hydroxypyrene a reliable bioindicator of measured dietary polycyclic aromatic hydrocarbon under normal conditions? J Chromatogr B Anal Technol Biomed Life Sci 778(1–2):165–177

    Article  CAS  Google Scholar 

  20. Nethery E, Wheeler AJ, Fisher M, Sjodin A, Li Z, Romanoff LC, Foster W, Arbuckle TE (2012) Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women. J Expo Sci Environ Epidemiol 22(1):70–81. doi:10.1038/jes.2011.32

    Article  CAS  Google Scholar 

  21. Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, Patterson DG Jr (2008) Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 107(3):320–331. doi:10.1016/j.envres.2008.01.013

    Article  CAS  Google Scholar 

  22. Romanoff LC, Li Z, Young KJ, Blakely NC 3rd, Patterson DG Jr, Sandau CD (2006) Automated solid-phase extraction method for measuring urinary polycyclic aromatic hydrocarbon metabolites in human biomonitoring using isotope-dilution gas chromatography high-resolution mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 835(1–2):47–54. doi:10.1016/j.jchromb.2006.03.004

    Article  CAS  Google Scholar 

  23. Gmeiner G, Geisendorfer T, Kainzbauer J, Nikolajevic M, Tausch H (2002) Quantification of ephedrines in urine by column-switching high-performance liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 768(2):215–221

    Article  CAS  Google Scholar 

  24. Gmeiner G, Krassnig C, Schmid E, Tausch H (1998) Fast screening method for the profile analysis of polycyclic aromatic hydrocarbon metabolites in urine using derivatisation–solid-phase microextraction. J Chromatogr B: Biomed Sci Appl 705(1):132–138

    Article  CAS  Google Scholar 

  25. Grimmer G, Dettbarn G, Jacob J (1993) Biomonitoring of polycyclic aromatic hydrocarbons in highly exposed coke plant workers by measurement of urinary phenanthrene and pyrene metabolites (phenols and dihydrodiols). Int Arch Occup Environ Health 65(3):189–199

    Article  CAS  Google Scholar 

  26. Yang M, Koga M, Katoh T, Kawamoto T (1999) A study for the proper application of urinary naphthols, new biomarkers for airborne polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol 36(1):99–108

    Article  CAS  Google Scholar 

  27. Onyemauwa F, Rappaport SM, Sobus JR, Gajdosova D, Wu R, Waidyanatha S (2009) Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr B Anal Technol Biomed Life Sci 877(11–12):1117–1125. doi:10.1016/j.jchromb.2009.02.067

    Article  CAS  Google Scholar 

  28. Ramsauer B, Sterz K, Hagedorn HW, Engl J, Scherer G, McEwan M, Errington G, Shepperd J, Cheung F (2011) A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of phenolic polycyclic aromatic hydrocarbons (OH-PAH) in urine of non-smokers and smokers. Anal Bioanal Chem 399(2):877–889. doi:10.1007/s00216-010-4355-7

    Article  CAS  Google Scholar 

  29. Xu X, Zhang J, Zhang L, Liu W, Weisel CP (2004) Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry. Rapid Commun Mass Spectrom 18(19):2299–2308. doi:10.1002/rcm.1625

    Article  CAS  Google Scholar 

  30. Benowitz NL, Jacob P 3rd, Bernert JT, Wilson M, Wang L, Allen F, Dempsey D (2005) Carcinogen exposure during short-term switching from regular to “light” cigarettes. Cancer Epidemiol Biomarkers Prev 14(6):1376–1383. doi:10.1158/1055-9965.EPI-04-0667

    Article  CAS  Google Scholar 

  31. Jacob P 3rd, Wilson M, Benowitz NL (2007) Determination of phenolic metabolites of polycyclic aromatic hydrocarbons in human urine as their pentafluorobenzyl ether derivatives using liquid chromatography-tandem mass spectrometry. Anal Chem 79(2):587–598. doi:10.1021/ac060920l

    Article  CAS  Google Scholar 

  32. Schummer C, Appenzeller BM, Millet M, Wennig R (2009) Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in human hair by gas chromatography-negative chemical ionization mass spectrometry. J Chromatogr A 1216(32):6012–6019. doi:10.1016/j.chroma.2009.05.068

    Article  CAS  Google Scholar 

  33. Toriba A, Kuramae Y, Chetiyanukornkul T, Kizu R, Makino T, Nakazawa H, Hayakawa K (2003) Quantification of polycyclic aromatic hydrocarbons (PAHs) in human hair by HPLC with fluorescence detection: a biological monitoring method to evaluate the exposure to PAHs. Biomed Chromatogr 17(2–3):126–132. doi:10.1002/bmc.222

    Article  CAS  Google Scholar 

  34. Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS (2007) Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 21(1):108–116. doi:10.1096/fj.06-6848com

    Article  CAS  Google Scholar 

  35. Uchida K, Araki T, Toiyama Y, Yoshiyama S, Inoue M, Ikeuchi H, Yanagi H, Miki C, Yamamura T, Kusunoki M (2006) Preoperative steroid-related complications in Japanese pediatric patients with ulcerative colitis. Dis Colon Rectum 49(1):74–79. doi:10.1007/s10350-005-0213-7

    Article  Google Scholar 

  36. Kintz P (2007) Analytical and practical aspects of drug testing in hair. CRC, Boca Raton

    Google Scholar 

  37. Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370(1–2):17–49. doi:10.1016/j.cca.2006.02.019

    Article  CAS  Google Scholar 

  38. Tsatsakis A, Tutudaki M (2004) Progress in pesticide and POPs hair analysis for the assessment of exposure. Forensic Sci Int 145(2–3):195–199. doi:10.1016/j.forsciint.2004.04.036

    Article  CAS  Google Scholar 

  39. Appenzeller BM, Agirman R, Neuberg P, Yegles M, Wennig R (2007) Segmental determination of ethyl glucuronide in hair: a pilot study. Forensic Sci Int 173(2–3):87–92. doi:10.1016/j.forsciint.2007.01.025

    Article  CAS  Google Scholar 

  40. Margariti MG, Tsatsakis AM (2009) Analysis of dialkyl phosphate metabolites in hair using gas chromatography-mass spectrometry: a biomarker of chronic exposure to organophosphate pesticides. Biomarkers 14(3):137–147. doi:10.1080/13547500902792912

    Article  CAS  Google Scholar 

  41. Barbounis EG, Tzatzarakis MN, Alegakis AK, Kokkinaki A, Karamanos N, Tsakalof A, Tsatsakis AM (2012) Assessment of PCBs exposure in human hair using double focusing high resolution mass spectrometry and single quadrupole mass spectrometry. Toxicol Lett 210(2):225–231. doi:10.1016/j.toxlet.2011.07.031

    Article  CAS  Google Scholar 

  42. Nakao T, Aozasa O, Ohta S, Miyata H (2002) Assessment of human exposure to PCDDs, PCDFs and Co-PCBs using hair as a human pollution indicator sample I: development of analytical method for human hair and evaluation for exposure assessment. Chemosphere 48(8):885–896. doi:10.1016/S0045-6535(02)00156-X

    Article  CAS  Google Scholar 

  43. Nakao T, Aozasa O, Ohta S, Miyata H (2005) Survey of human exposure to PCDDs, PCDFs, and coplanar PCBs using hair as an indicator. Arch Environ Contam Toxicol 49(1):124–130. doi:10.1007/s00244-004-0059-3

    Article  CAS  Google Scholar 

  44. Ohgami T, Nonaka S, Irifune H, Watanabe M, Tsukazaki N, Tanaka K, Yano M, Yoshida H, Murayama F, Rikioka Y (1991) A comparative study on the concentrations of polychlorinated biphenyls (PCBs) and polychlorinated quaterphenyls (PCQs) in the blood and hair of “Yusho” patients and inhabitants of Nagasaki Prefecture. Fukuoka Igaku Zasshi 82(5):295–299

    CAS  Google Scholar 

  45. Margariti MG, Tsakalof AK, Tsatsakis AM (2007) Analytical methods of biological monitoring for exposure to pesticides: recent update. Ther Drug Monit 29(2):150–163. doi:10.1097/FTD.0b013e31803d3509

    Article  CAS  Google Scholar 

  46. Margariti MG, Tsatsakis AM (2009) Assessment of long-term subacute exposure to dimethoate by hair analysis of dialkyl phosphates DMP and DMTP in exposed rabbits: the effects of dose, dose duration and hair colour. Environ Res 109(7):821–829. doi:10.1016/j.envres.2009.07.009

    Article  CAS  Google Scholar 

  47. Tutudaki M, Tsakalof AK, Tsatsakis AM (2003) Hair analysis used to assess chronic exposure to the organophosphate diazinon: a model study with rabbits. Hum Exp Toxicol 22(3):159–164

    Article  CAS  Google Scholar 

  48. Tutudaki M, Tsatsakis AM (2005) Pesticide hair analysis: development of a GC-NCI-MS method to assess chronic exposure to diazinon in rats. J Anal Toxicol 29(8):805–809

    Article  CAS  Google Scholar 

  49. Hasei T, Ohno T, Inoue T, Watanabe T (2011) Determination of 3,6-dinitrobenzo[e]pyrene in tea leaves as a possible exposure source and in human hair as a biomarker using a two-dimensional HPLC system. J Health Sci 57(1):53–59

    Article  CAS  Google Scholar 

  50. Appenzeller BMR, Tsatsakis AM (2012) Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: state of the art, critical review and future needs. Toxicol Lett 210(2):119–140. doi:10.1016/j.toxlet.2011.10.021

    Article  CAS  Google Scholar 

  51. Kishikawa N, Morita S, Wada M, Ohba Y, Nakashima K, Kuroda N (2004) Determination of hydroxylated polycyclic aromatic hydrocarbons in airborne particulates by high-performance liquid chromatography with fluorescence detection. Anal Sci 20(1):129–132

    Article  CAS  Google Scholar 

  52. Kishikawa N, Wada M, Ohba Y, Nakashima K, Kuroda N (2004) Highly sensitive and selective determination of 9, 10-phenanthrenequinone in airborne particulates using high-performance liquid chromatography with pre-column derivatization and fluorescence detection. J Chromatogr A 1057(1–2):83–88

    CAS  Google Scholar 

  53. Simoneit BR, Bi X, Oros DR, Medeiros PM, Sheng G, Fu J (2007) Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments. Environ Sci Technol 41(21):7294–7302

    Article  CAS  Google Scholar 

  54. Wang G, Kawamura K (2005) Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China. Environ Sci Technol 39(19):7430–7438

    Article  CAS  Google Scholar 

  55. Appenzeller BM, Mathon C, Schummer C, Alkerwi A, Lair ML (2012) Simultaneous determination of nicotine and PAH metabolites in human hair specimen: a potential methodology to assess tobacco smoke contribution in PAH exposure. Toxicol Lett. doi:10.1016/j.toxlet.2011.11.022

    Google Scholar 

  56. Martins LF, Yegles M, Chung H, Wennig R (2006) Sensitive, rapid and validated gas chromatography/negative ion chemical ionization-mass spectrometry assay including derivatisation with a novel chiral agent for the enantioselective quantification of amphetamine-type stimulants in hair. J Chromatogr B Anal Technol Biomed Life Sci 842(2):98–105. doi:10.1016/j.jchromb.2006.04.024

    Article  CAS  Google Scholar 

  57. Grova N, Salquebre G, Schroeder H, Appenzeller BM (2011) Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry. Chem Res Toxicol 24(10):1653–1667. doi:10.1021/tx2003596

    Article  CAS  Google Scholar 

  58. World Health Organization (1998) International Program on Chemical Safety. Environmental health criteria 202. Selected non-heterocyclic aromatic hydrocarbons. World Health Organization, Geneva, pp 540–543

    Google Scholar 

  59. Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    Article  CAS  Google Scholar 

  60. Han E, Yang W, Lee S, Kim E, In S, Choi H, Chung H, Song JM (2011) Establishment of the measurement uncertainty of 11-nor-D9-tetrahydrocannabinol-9-carboxylic acid in hair. Forensic Sci Int 206(1–3):e85–92. doi:10.1016/j.forsciint.2010.11.028

    Article  CAS  Google Scholar 

  61. Han E, Park Y, Kim E, Lee S, Choi H, Chung H, Song JM (2010) The dependence of the incorporation of methamphetamine into rat hair on dose, frequency of administration and hair pigmentation. J Chromatogr B Anal Technol Biomed Life Sci 878(28):2845–2851. doi:10.1016/j.jchromb.2010.08.040

    Article  CAS  Google Scholar 

  62. Grova N, Monteau F, Le Bizec B, Feidt C, Andre F, Rychen G (2005) Determination of phenanthrene and hydroxyphenanthrenes in various biological matrices at trace levels using gas chromatography-mass spectrometry. J Anal Toxicol 29(3):175–181

    Article  CAS  Google Scholar 

  63. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165(2–3):216–224. doi:10.1016/j.forsciint.2006.05.021

    Article  CAS  Google Scholar 

  64. Hartmann C, Smeyers-Verbeke J, Massart DL, McDowall RD (1998) Validation of bioanalytical chromatographic methods. J Pharm Biomed Anal 17(2):193–218. doi:10.1016/S0731-7085(97)00198-2

    Article  CAS  Google Scholar 

  65. Schummer C, Delhomme O, Appenzeller BM, Wennig R, Millet M (2009) Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 77(4):1473–1482. doi:10.1016/j.talanta.2008.09.043

    Article  CAS  Google Scholar 

  66. Chang LH (1943) The fecal excretion of polycyclic hydrocarbons following their administration to the rat. J Biol Chem 151:93–99

    CAS  Google Scholar 

  67. Campo L, Fustinoni S, Bertazzi P (2011) Quantification of carcinogenic 4-to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry. Anal Bioanal Chem 401(2):625–634. doi:10.1007/s00216-011-5110-4

    Article  CAS  Google Scholar 

  68. Green SJ, Wilson JF (1996) The effect of hair color on the incorporation of methadone into hair in the rat. J Anal Toxicol 20(2):121–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are most grateful to Henri Schroeder and Marie France Schoën for their technical assistance. This work was supported by the Luxembourg Ministère de l’Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Grova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grova, N., Salquèbre, G. & Appenzeller, B.M.R. Gas chromatography–tandem mass spectrometry analysis of 52 monohydroxylated metabolites of polycyclic aromatic hydrocarbons in hairs of rats after controlled exposure. Anal Bioanal Chem 405, 8897–8911 (2013). https://doi.org/10.1007/s00216-013-7317-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7317-z

Keywords

Navigation