Skip to main content
Log in

Biodegradation studies of N 4-acetylsulfapyridine and N 4-acetylsulfamethazine in environmental water by applying mass spectrometry techniques

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work evaluates the biodegradation of N 4-acetylsulfapyridine (AcSPY) and N 4-acetylsulfamethazine (AcSMZ), metabolites of two of the most commonly used sulfonamides (SAs) in human and veterinary medicine, respectively. Aerobic transformation in effluent wastewater was simulated using aerated fixed-bed bioreactors. No visible changes in concentration were observed in the AcSMZ reactor after 90 days, whereas AcSPY was fully degraded after 32 days of experiment. It was also demonstrated that AcSPY transformed back to its parent compound sulfapyridine (SPY). The environmental presence of these two metabolites in wastewater effluent had been previously investigated and confirmed, together with three more SA acetylated metabolites and their corresponding parent compounds, in 18 different wastewater treatment plants in Hesse (Germany). Sulfamethoxazole (SMX) and SPY were the two SAs detected most frequently (90% and 89% of the samples, respectively) and in the highest concentrations (682 ng L−1 for SMX and 532 ng L−1 for SPY). To conclude, hazard quotients were calculated whenever toxicity data were available. None of the SAs studied posed an environmental risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399(1):251–275

    Article  CAS  Google Scholar 

  2. Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28(12):2473–2484

    Article  CAS  Google Scholar 

  3. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  Google Scholar 

  4. Postigo C, de Alda MJL, Barcelo D (2010) Drugs of abuse and their metabolites in the Ebro River basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ Int 36(1):75–84

    Article  CAS  Google Scholar 

  5. Terzic S, Senta I, Ahel M, Gros M, Petrovic M, Barcelo D, Müller J, Knepper T, Martí I, Ventura F, Jovancic P, Jabucar D (2008) Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci Total Environ 399(1–3):66–77

    CAS  Google Scholar 

  6. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166(2):145–167

    Article  CAS  Google Scholar 

  7. Vicente D, Perez-Trallero E (2010) Tetracyclines, sulfonamides, and metronidazole. Enferm Infecc Microbiol Clin 28 (2):122-130

    Google Scholar 

  8. García-Galán MJ, Díaz-Cruz MS, Barceló D (2010) Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Talanta 81(1–2):355–366

    Article  Google Scholar 

  9. Göbel A, Thomsen A, McArdell CS, Alder AC, Giger W, Theiss N, Loffler D, Ternes TA (2005) Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J Chromatogr A 1085(2):179–189

    Article  Google Scholar 

  10. Stoob K, Singer HP, Stettler S, Hartmann N, Mueller SR, Stamm CH (2006) Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. J Chromatogr A 1128(1–2):1–9

    Article  CAS  Google Scholar 

  11. Díaz-Cruz MS, García-Galán MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J Chromatogr A 1193(1–2):50–59

    Article  Google Scholar 

  12. García-Galán MJ, Díaz-Cruz MS, Barceló D (2011) Occurrence of sulfonamide residues along the Ebro river basin: removal in wastewater treatment plants and environmental impact assessment. Environ Int 37(2):462–473

    Article  Google Scholar 

  13. Göbel A, McArdell CS, Suter MJF, Giger W (2004) Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chem 76(16):4756–4764

    Article  Google Scholar 

  14. Vree TB, Schoondermark-Van De Ven E, Verwey-Van Wissen GPWGM, Baars AM, Swolfs A, Van Galen PM, Amatdjais-Groenen H (1995) Isolation, identification and determination of sulfadiazine and its hydroxy metabolites and conjugates from man and Rhesus monkey by high-performance liquid chromatography. J Chromatogr B 670(1):111–123

    Article  CAS  Google Scholar 

  15. Vree TB, Van der Ven AJAM, Koopmans PP, Van Ewijk-Beneken Kolmer EWJ, Verwey-van Wissen CPWGM (1995) Pharmacokinetics of sulfamethoxazole with its hydroxy metabolites and N 4-acetyl-, N 1-glucuronide conjugates in healthy human volunteers. Clin Drug Invest 9(1):43–53

    Article  CAS  Google Scholar 

  16. Vree TB, Van Der Ven AJAM, Verwey-Van Wissen CPWGM, Van Ewijk-Beneken Kolmer EWJ, Swolfs AEM, Van Galen PM, Amatdjais-Groenen H (1994) Isolation, identification and determination of sulfamethoxazole and its known metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr B 658(2):327–340

    Article  CAS  Google Scholar 

  17. Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37(15):286A–294A

    Article  CAS  Google Scholar 

  18. Ginebreda A, Munoz I, de Alda ML, Brix R, Lopez-Doval J, Barcelo D (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36(2):153–162

    Article  CAS  Google Scholar 

  19. Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36(1):15–26

    Article  CAS  Google Scholar 

  20. Santos JL, Aparicio I, Alonso E (2007) Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environ Int 33(4):596–601

    Article  CAS  Google Scholar 

  21. Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333(1–3):167–184

    CAS  Google Scholar 

  22. Hilton MJ, Thomas KV (2003) Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1015(1–2):129–141

    Article  CAS  Google Scholar 

  23. Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17(6):526–538

    Article  CAS  Google Scholar 

  24. Ferrari B, Mons R, Vollat B, Fraysse B, Paxaeus N, Lo Giudice R, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23(5):1344–1354

    Article  CAS  Google Scholar 

  25. EMEA CHMP (2006) Guideline on the environmental risk assessment of medicinal products for human use. European Medicines Agency, Committee for Medicinal Products for Human Use, London, UK.

  26. EMEA CVMP (2004) Guideline on environmental impact assessment for veterinary medicinal products phase II. European Medicines Agency, Committee for Medicinal Products for Human Use, London, UK.

  27. Buttiglieri G, Peschka M, Fromel T, Muller J, Malpei F, Seel P, Knepper TP (2009) Environmental occurrence and degradation of the herbicide n-chloridazon. Water Res 43(11):2865–2873

    Article  CAS  Google Scholar 

  28. Karrenbrock F, Knepper T, Sacher F, Lindner K (1999) Development of a standard test-filter system for the determination of microbial degradability of simple compounds. Vom Wasser 92:361–371

    CAS  Google Scholar 

  29. Ingerslev F, Halling-Sörensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem 19(10):2467–2473

    Article  CAS  Google Scholar 

  30. Garcia-Galan MJ, Garrido T, Fraile J, Ginebreda A, Diaz-Cruz MS, Barcelo D (2010) Application of fully automated online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry for the determination of sulfonamides and their acetylated metabolites in groundwater. Anal Bioanal Chem 399(2):795–806

    Article  Google Scholar 

  31. Kim Y, Choi K, Jung J, Park S, Kim P, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine,cimetidine, diltiazem and six major sulfonamides and their potential ecological risks in Korea. Environ Int 33:370–375

    Google Scholar 

  32. Barber LB, Keefe SH, Leblanc DR, Bradley PM, Chapelle FH, Meyer MT, Loftin KA, Kolpin DW, Rubio F (2009) Fate of sulfamethoxazole, 4-nonylphenol, and 17 beta-estradiol in groundwater contaminated by wastewater treatment plant effluent. Environ Sci Technol 43(13):4843–4850

    Article  CAS  Google Scholar 

  33. Rodayan A, Roy R, Yargeau V (2010) Oxidation products of sulfamethoxazole in ozonated secondary effluent. J Hazard Mater 177(1–3):237–243

    Article  CAS  Google Scholar 

  34. Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24(6):1361–1367

    Article  CAS  Google Scholar 

  35. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122(3):259–265

    Article  CAS  Google Scholar 

  36. Peschka M, Fromel T, Fichtner N, Hierse W, Kleineidam M, Montenegro E, Knepper TP (2008) Mechanistic studies in biodegradation of the new synthesized fluorosurfactant 9-[4-(trifluoromethyl)phenoxy]nonane-1-sulfonate. J Chromatogr A 1187(1–2):79–86

    Article  CAS  Google Scholar 

  37. Bernhard M, Müller J, Knepper TP (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40(18):3419–3428

    Article  CAS  Google Scholar 

  38. Peschka M, Roberts P, Knepper T (2007) Analysis, fate studies and monitoring of the antifungal agent clotrimazole in the aquatic environment. Anal Bioanal Chem 389(3):959–968

    Article  CAS  Google Scholar 

  39. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372(2–3):361–371

    Google Scholar 

  40. Unold M, Simunek J, Kasteel R, Groeneweg J, Vereecken H (2009) Transport of manure-based applied sulfadiazine and its main transformation products in soil columns. Vadose Zone J 8(3):677–689

    Article  CAS  Google Scholar 

  41. Boreen AL, Arnold WA, McNeill K (2005) Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct. Environ Sci Technol 39(10):3630–3638

    Article  CAS  Google Scholar 

  42. García-Galán MJ, Rodríguez-Rodríguez CE, Vicent T, Caminal G, Díaz-Cruz MS, Barceló D (2011) Biodegradation of sulfamethazine by Trametes versicolor. Application to sewage sludge and identification of intermediate products by UPLC-QqTOF. Sci Total Environ 409(24):5505–5512

    Article  Google Scholar 

  43. Díaz-Cruz M, Darbra R, Ginebreda A, Hansen P, Sabater S, Galbiati L, Capri E, Vale C, Barceló D (2010) In: Barceló D, Petrovic M (eds) The Ebro River basin, vol 13. The handbook of environmental chemistry. Springer, Berlin / Heidelberg, p 373

    Chapter  Google Scholar 

  44. Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144(3):383–395

    Article  CAS  Google Scholar 

  45. Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57(11):1733–1738

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Spanish Ministry of Science and Innovation through the projects CEMAGUA (CGL2007-64551/HID) and SCARCE (Consolider Ingenio 2010 CSD2009-00065) and by the Spanish Ministry of Rural and Marine Environment Project VIECO (009/RN08/01.1). The authors would like to thank M. Bernhard for their uninterested help. MJ García acknowledges AGAUR (Generalitat de Catalunya, Spain) for economic support through an FI pre-doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knepper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Galán, M.J., Frömel, T., Müller, J. et al. Biodegradation studies of N 4-acetylsulfapyridine and N 4-acetylsulfamethazine in environmental water by applying mass spectrometry techniques. Anal Bioanal Chem 402, 2885–2896 (2012). https://doi.org/10.1007/s00216-012-5751-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5751-y

Keywords

Navigation