Skip to main content
Log in

Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

By combining cell technology and microchip technology, innovative cellular biochemical tools can be created from the microscale to the nanoscale for both practical applications and fundamental research. On the microscale level, novel practical applications taking advantage of the unique capabilities of microfluidics have been accelerated in clinical diagnosis, food safety, environmental monitoring, and drug discovery. On the other hand, one important trend of this field is further downscaling of feature size to the 101–103 nm scale, which we call extended-nano space. Extended-nano space technology is leading to the creation of innovative nanofluidic cellular and biochemical tools for analysis of single cells at the single-molecule level. As a pioneering group in this field, we focus not only on the development of practical applications of cellular microchip devices but also on fundamental research to initiate new possibilities in the field. In this paper, we review our recent progress on tissue reconstruction, routine cell-based assays on microchip systems, and preliminary fundamental method for single-cell analysis at the single-molecule level with integration of the burgeoning technologies of extended-nano space.

By combination of cell technology and microchip technology, innovative cellular biochemical tools can be created from the microscale to the nanoscale, for both practical applications and fundamental research. The image demonstrates a concept of analysis of a single cell at the singlemolecule level on a microchip with integration of extended-nano (101–103 nm) space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Ali J, Sorger PK, Jensen KF (2006) Nature 442:403–411

    Article  CAS  Google Scholar 

  2. Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Anal Chem 74:1565–1571

    Article  CAS  Google Scholar 

  3. Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Anal Chem 76:52A–60A

    Article  CAS  Google Scholar 

  4. Dong Y, Xu Y, Liu Z, Fu Y, Ohashi T, Tanaka Y, Mawatari K, Kitamori T (2011) Lab Chip 11:2153–2155

    Article  CAS  Google Scholar 

  5. Jang K, Sato K, Igawa K, Chung UI, Kitamori T (2008) Anal Bioanal Chem 390:825–832

    Article  CAS  Google Scholar 

  6. Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T (2006) J Chromatogr A 1111:233–237

    Article  CAS  Google Scholar 

  7. Tsukahara T, Hibara A, Ikeda Y, Kitamori T (2007) Angew Chem Int Ed Engl 46:1180–1183

    Article  CAS  Google Scholar 

  8. Hibara A, Saito T, Kim HB, Tokeshi M, Ooi T, Nakao M, Kitamori T (2002) Anal Chem 74:6170–6176

    Article  CAS  Google Scholar 

  9. Tas NR, Haneveld J, Jansen HV, Elwenspoek M, van den Berg A (2004) Appl Phys Lett 85:3274–3276

    Article  CAS  Google Scholar 

  10. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Science 284:489–493

    Article  CAS  Google Scholar 

  11. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) Faseb J 12:47–56

    Google Scholar 

  12. Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER, Ravens M, Pien H, Cunningham B, Vacanti JP (2000) Tissue Eng 6:105–117

    Article  CAS  Google Scholar 

  13. Tsuda Y, Shimizu T, Yarnato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Biomaterials 28:4939–4946

    Article  CAS  Google Scholar 

  14. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD (2005) Tissue Eng 11:302–309

    Article  CAS  Google Scholar 

  15. Yamashita T, Tanaka Y, Idota N, Sato K, Mawatari K, Kitamori T (2011) Biomaterials 32:2459–2465

    Article  CAS  Google Scholar 

  16. Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Biomaterials 28:5033–5043

    Article  CAS  Google Scholar 

  17. Ishihara K, Ueda T, Nakabayashi N (1990) Polym J 22:355–360

    Article  CAS  Google Scholar 

  18. Xu Y, Takai M, Ishihara K (2009) Biomaterials 30:4930–4938

    Article  CAS  Google Scholar 

  19. Xu Y, Takai M, Konno T, Ishihara K (2007) Lab Chip 7:199–206

    Article  CAS  Google Scholar 

  20. Xu Y, Sato K, Mawatari K, Konno T, Jang K, Ishihara K, Kitamori T (2010) Adv Mater 22:3017–3021

    Article  CAS  Google Scholar 

  21. Xu Y, Jang K, Konno T, Ishihara K, Mawatari K, Kitamori T (2010) Biomaterials 31:8839–8846

    Article  CAS  Google Scholar 

  22. Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM (2009) Anal Chem 81:5517–5523

    Article  CAS  Google Scholar 

  23. Liu W, Dechev N, Foulds IG, Burke R, Parameswaran A, Park EJ (2009) Lab Chip 9:2381–2390

    Article  CAS  Google Scholar 

  24. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Anal Chem 75:3581–3586

    Article  CAS  Google Scholar 

  25. Jang K, Xu Y, Tanaka Y, Sato K, Mawatari K, Konno T, Ishihara K, Kitamori T (2010) Biomicrofluidics 4:32208

    Article  Google Scholar 

  26. Jang K, Sato K, Tanaka Y, Xu Y, Sato M, Nakajima T, Mawatari K, Konno T, Ishihara K, Kitamori T (2010) Lab Chip 10:1937–1945

    Article  CAS  Google Scholar 

  27. Lizardi PM, Huang XH, Zhu ZR, Bray-Ward P, Thomas DC, Ward DC (1998) Nat Genet 19:225–232

    Article  CAS  Google Scholar 

  28. Jarvius J, Melin J, Goransson J, Stenberg J, Fredriksson S, Gonzalez-Rey C, Bertilsson S, Nilsson M (2006) Nat Methods 3:725–727

    Article  CAS  Google Scholar 

  29. Tanaka Y, Xi H, Sato K, Mawatari K, Renberg B, Nilsson M, Kitamori T (2011) Anal Chem 83:3352–3357

    CAS  Google Scholar 

  30. Park JU, Lee JH, Paik U, Lu Y, Rogers JA (2008) Nano Lett 8:4210–4216

    Article  CAS  Google Scholar 

  31. Jiang J, Li XM, Mak WC, Trau D (2008) Adv Mater 20:1636

    Article  CAS  Google Scholar 

  32. Hoff JD, Cheng LJ, Meyhofer E, Guo LJ, Hunt AJ (2004) Nano Lett 4:853–857

    Article  CAS  Google Scholar 

  33. Renberg B, Sato K, Mawatari K, Idota N, Tsukahara T, Kitamori T (2009) Lab Chip 9:1517–1523

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the JSPS Core-to-Core Program and SCF (Special Coordination Funds for Promoting Science and Technology) of MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Takehiko Kitamori.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Jang, K., Yamashita, T. et al. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Anal Bioanal Chem 402, 99–107 (2012). https://doi.org/10.1007/s00216-011-5296-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5296-5

Keywords

Navigation