Skip to main content
Log in

Challenges and trends in the determination of selected chemical contaminants and allergens in food

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article covers challenges and trends in the determination of some major food chemical contaminants and allergens, which—among others—are being monitored by Health Canada’s Food Directorate and for which background levels in food and human exposure are being analyzed and calculated. Eleven different contaminants/contaminant groups and allergens have been selected for detailed discussion in this paper. They occur in foods as a result of: use as a food additive or ingredient; processing-induced reactions; food packaging migration; deliberate adulteration; and/or presence as a chemical contaminant or natural toxin in the environment. Examples include acrylamide as a food-processing-induced contaminant, bisphenol A as a food packaging-derived chemical, melamine and related compounds as food adulterants and persistent organic pollutants, and perchlorate as an environmental contaminant. Ochratoxin A, fumonisins, and paralytic shellfish poisoning toxins are examples of naturally occurring toxins whereas sulfites, peanuts, and milk exemplify common allergenic food additives/ingredients. To deal with the increasing number of sample matrices and analytes of interest, two analytical approaches have become increasingly prevalent. The first has been the development of rapid screening methods for a variety of analytes based on immunochemical techniques, utilizing ELISA or surface plasmon resonance technology. The second is the development of highly sophisticated multi-analyte methods based on liquid chromatography coupled with multiple-stage mass spectrometry for identification and simultaneous quantification of a wide range of contaminants, often with much less requirement for tedious cleanup procedures. Whereas rapid screening methods enable testing of large numbers of samples, the multi analyte mass spectrometric methods enable full quantification with confirmation of the analytes of interest. Both approaches are useful when gathering surveillance data to determine occurrence and background levels of both recognized and newly identified contaminants in foods in order to estimate human daily intake for health risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Murphy PA, Hendrich S, Landgren C, Bryant CM (2006) Food mycotoxins: An update. J Food Sci 71:R51–R65

    Article  CAS  Google Scholar 

  2. Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT (2010) An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews 29:3–26

    Article  CAS  Google Scholar 

  3. Mayer AMS (2009) Special issue on marine toxins. Mar Drugs 7:19–23

    Article  Google Scholar 

  4. Aráoz R, Molgó J, Tandeau de Marsac N (2010) Neurotoxic cyanobacterial toxins. Toxicon 56:813–828

    Article  CAS  Google Scholar 

  5. Rawn DFK, Breakell K, Verigin V, Nicolidakis H, Sit D, Feeley M (2009) Persistent organic pollutants in fish oil supplements on the canadian market: Polychlorinated biphenyls and organochlorine insecticides. J Food Sci 74:T14–T19

    Article  CAS  Google Scholar 

  6. Parzefall W (2002) Risk assessment of dioxin contamination in human food. Food Chem Toxicol 40:1185–1189

    Article  CAS  Google Scholar 

  7. Baker BP, Benbrook CM, Groth E, Benbrook KL (2002) Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: Insights from three US data sets. Food Addit Contam 19:427–446

    Article  CAS  Google Scholar 

  8. Wang Z, Forsyth D, Lau BP, Pelletier L, Bronson R, Gaertner D (2009) Estimated dietary exposure of canadians to perchlorate through the consumption of fruits and vegetables available in ottawa markets. J Agric Food Chem 57:9250–9255

    Article  CAS  Google Scholar 

  9. Muncke J (2009) Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevant source? Sci Total Environ 407:4549–4559

    Article  CAS  Google Scholar 

  10. Stolker AAM, Brinkman UAT (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals - A review. J Chromatogr A 1067:15–53

    Article  CAS  Google Scholar 

  11. Becalski A, Lau BP, Lewis D, Seaman SW (2003) Acrylamide in foods: Occurrence, sources, and modeling. J Agr and Food Chem 51:802–808

    Article  CAS  Google Scholar 

  12. Alaejos MS, González V, Afonso AM (2008) Exposure to heterocyclic aromatic amines from the consumption of cooked red meat and its effect on human cancer risk: A review. Food Addit Contam - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 25:2–24

    CAS  Google Scholar 

  13. Tittlemier SA, Lau BP, Ménard C, Corrigan C, Sparling M, Gaertner D (2009) Melamine in infant formula sold in canada: Occurrence and risk assessment. J Agric Food Chem 57:5340–5344

    Article  CAS  Google Scholar 

  14. Vahl M (1993) A survey of ethyl carbamate in beverages, bread and acidified milks sold in denmark. Food Addit Contam 10:585–592

    Article  CAS  Google Scholar 

  15. Corsolini S, Guerranti C, Perra G, Focardi S (2008) Polybrominated diphenyl ethers, perfluorinated compounds and chlorinated pesticides in swordfish (xiphias gladius) from the mediterranean sea. Environ Sci Technol 42:4344–4349

    Article  CAS  Google Scholar 

  16. Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2000) Acrylamide: A cooking carcinogen? Chem Res Toxicol 13:517–522

    Article  CAS  Google Scholar 

  17. Mills C, Mottram DS, Wedzicha BL (2009) Process-Induced Food Toxicants. Occurence, Formation, Mitigation and Health Risks. John Wiley & Sons Inc, Hoboken, NJ

    Google Scholar 

  18. Becalski A , Lau BP-Y, Lewis D, Seaman SW (2002) Acrylamide in foods: Occurence and sources. AOAC Int. Annual meeting, Los Angeles, CA, September 22–26, 2002

  19. Friedman MA, Dulak LH, Stedham MA (1995) A lifetime oncogenicity study in rats with acrylamide. Fundam Appl Toxicol 27:95–105

    Article  CAS  Google Scholar 

  20. Joint FAO/WHO Expert Committee on Food Additives (2006). Evaluation of certain food contaminants. WHO Technical Report Series 930

  21. International Agency for Research on Cancer (1994) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 60:389–433

  22. EFSA (2008) Results on the monitoring of acrylamide levels in food (EFSA-Q-2008-343). EFSA

  23. Baum M, Bohm N, Gorlitz J, Lantz I, Merz KH, Ternite R, Eisenbrand G (2008) Fate of 14C-acrylamide in roasted and ground coffee during storage. Mol Nutr Food Res 52:600–608

    Article  CAS  Google Scholar 

  24. Koch M, Bremser W, Koeppen R, Siegel D, Toepfer A, Nehls I (2009) Development of two certified reference materials for acrylamide determination in foods. J Agric Food Chem 57:8202–8207

    Article  CAS  Google Scholar 

  25. Hoenicke K, Gatermann R (2005) Studies on the stability of acrylamide in food during storage. J AOAC Int 88:268–273

    CAS  Google Scholar 

  26. Gokmen V, Senyuva HZ (2008) Bioactive compounds in foods. Blackwell Pub. Ltd, Chichester

    Google Scholar 

  27. Castle L (2006) Acrylamide and other hazardous compounds in heat-treated foods. Woolhead Pub. Ltd, Cambridge

    Google Scholar 

  28. Stadler RH, Goldmann T (2008) Chapter 20: Acrylamide, Food Contaminants and Residue Analysis. Elsevier B.V, Amsterdam

    Google Scholar 

  29. Rosen J, Nyman A, Hellenas K-E (2007) Retention studies of acrylamide for the design of a robust liquid chromatography-tandem mass spectrometry method for food analysis. J Chromatogr A 1172:19–24

    Article  CAS  Google Scholar 

  30. Becalski A, Lau BP-Y, Lewis D, Seaman SW, Hayward S, Sahagian M, Ramesh LY (2004) Acrylamide in French fries: Influence of free amino acids and sugars. J Agric Food Chem 52:3801–3806

    Article  CAS  Google Scholar 

  31. Fohgelberg P, Rosen J, Hellenas K-E, Abramsson-Zetterberg L (2005) The acrylamide intake via some common baby food for children in Sweden during their first year of life-an improved method for analysis of acrylamide. Food Chem Toxicol 43:951–959

    Article  CAS  Google Scholar 

  32. Biedermann M, Grob K (2008) In GC-MS, acrylamide from heated foods may be coeluted with 3-hydroxy propionitrile. Eur J Food Sci and Technol 227:945–948

    Article  CAS  Google Scholar 

  33. Elmore JS, Koutsidis G, Dodson AT, Mottram DS, Wedzicha BL (2005) Determination of acrylamide and its precursors in potato, wheat, and rye model systems. J Agric Food Chem 53:1286–1293

    Article  CAS  Google Scholar 

  34. Pittet A, Persset A, Oberson JM (2004) trace level determination of acrylamide in cereal-based foods by gas chromatography-mass spectrometry. J Chromatogr A 1035:123–130

    Article  CAS  Google Scholar 

  35. Soares C, Alves RC, Casal S, Oliveira MB, Fernandes JO (2010) Development and validation of a matrix solid-phase dispersion method to determine acrylamide in coffee and coffee substitutes. J Food Sci 75:T57–T63

    Article  CAS  Google Scholar 

  36. Andrzejewski D, Roach JAG, Gay ML, Musser SM (2004) Analysis of coffee for the presence of acrylamide by LC-MS/MS. J Agric Food Chem 52:1996–2002

    Article  CAS  Google Scholar 

  37. Pardo O, Yusa V, Coscolla C, Leon N, Pastor A (2007) Determination of acrylamide in coffee and chocolate by pressurised fluid extraction and liquid chromatography-tandem mass spectrometry. Food Addit Contam 24:663–672

    Article  CAS  Google Scholar 

  38. Dunovska L, Cajka T, Hajslova J, Holadova K (2006) Direct determination of acrylamide in food by gas chromatography–high-resolution time-of-flight mass spectrometry. Anal Chimica Acta 578:234–240

    Article  CAS  Google Scholar 

  39. Zhang Y, Dong Y, Ren Y, Zhang Y (2006) Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector. J Chromatogr A 1116:209–216

    Article  CAS  Google Scholar 

  40. Owen LM, Castle L, Kelly J, Wilson L, Lloyd AS (2005) Acrylamide Analysis: Assessment of Results from Six Rounds of Food Analysis Performance Assessment Scheme (FAPAS®) Proficiency Testing. J AOAC Int 88:285–291

    CAS  Google Scholar 

  41. Klaffke H, Fauhl C, Mathar E, Palavinskas R, Wittkowski R, Wenzl T, Anklam E (2005) Results from two interlaboratory comparison tests organized in Germany and at the EU Level for analysis of acrylamide in Food. J AOAC Int 88:292–298

    CAS  Google Scholar 

  42. Wenzl T, Karasek L, Rosen J, Hellenas K-E, Crews C, Castle L, Anklam E (2006) Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products. J Chromatogr A 1132:211–218

    Article  CAS  Google Scholar 

  43. Jezussek M, Schieberle P (2003) A New LC/MS-Method for the quantitation of acrylamide based on a stable isotope dilution assay and derivatization with 2-mercaptobenzoic acid. Comparison with two GC/MS Methods. J Agric Food Chem 51:7866–7871

    Article  CAS  Google Scholar 

  44. Delatour T, Perisset A, Goldmann T, Riediker S, Stadler RH (2004) Improved sample preparation to determine acrylamide in difficult matrices such as chocolate powder, cocoa, coffee, and coffee surrogates by liquid chromatography tandem mass spectroscopy. J Agric Food Chem 52:4625–4631

    Article  CAS  Google Scholar 

  45. Ren Y, Zhang Y, Jiao J, Cai Z, Zhang Y (2006) Sensitive isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry method for the determination of acrylamide in chocolate. Food Addit Contam 23:228–236

    Article  CAS  Google Scholar 

  46. Yusa V, Quintas G, Pardo O, Marti P, Pastor A (2006) Determination of acrylamide in foods by pressurized fluid extraction and liquid chromatography-tandem mass spectrometry used for a survey of Spanish cereal-based foods. Food Addit Contam 23:237–244

    Article  CAS  Google Scholar 

  47. Karasek L, Wenzl T, Anklam E (2009) Determination of acrylamide in roasted chestnuts and chestnut-based foods by isotope dilution HPLC-MS/MS. Food Chem 114:1555–1558

    Article  CAS  Google Scholar 

  48. Nielsen NJ, Granby K, Hedegaard RV, Skibsted LH (2006) A liquid chromatography-tandem mass spectrometry method for simultaneous analysis of acrylamide and the precursors, asparagine and reducing sugars in bread. Anal Chim Acta 557:211–220

    Article  CAS  Google Scholar 

  49. Bermudo E, Moyano E, Puignou L, Galceran MT (2008) Liquid chromatography coupled to tandem mass spectrometry for the analysis of acrylamide in typical Spanish products. Talanta 76:389–394

    Article  CAS  Google Scholar 

  50. McHale KJ, Winnik W, Paul G (2009) Quantitation of acrylamide in food samples on the TSQ Quantum Discovery by LC/APCI-MS/MS. Thermo Scientific Application Notebook [1], 20–22

  51. Becalski A, Lau BP-Y, Lewis D, Seaman SW (2005) Chemistry and safety of acrylamide in food. Springer, New York

    Google Scholar 

  52. Govaert Y, Arisseto A, van Loco J, Scheers E, Fraselle S, Weverbergh E, Degroodt JM, Goeyens L (2005) Optimisation of a liquid chromatography-tandem mass spectrometric method for the determination of acrylamide in foods. Anal Chim Acta 556:275–280

    Article  CAS  Google Scholar 

  53. Zhou S, Zhang C, Wang D, Zhao M (2008) Antigen synthetic strategy and immunoassay development for detection of acrylamide in foods. Analyst 133:903–909

    Article  CAS  Google Scholar 

  54. Preston A, Fodey T, Elliot C (2008) Development of a high-throughput enzyme-linked immunosorbent assay for the routine detection of the carcinogen acrylamide in food, via rapid derivatisation pre-analysis. Anal Chim Acta 608:178–185

    Article  CAS  Google Scholar 

  55. EC (2004) Commission Directive 2004/19/EC of 1 March 2004 amending Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with foodstuffs. Offic J Eur Union 47(L71):8–21

    Google Scholar 

  56. United States Environmental Protection Agency (US EPA) (1993) Bisphenol A. (CASRN 80-05-7), Integrated Risk Information System (IRIS), 1993. Available at http://www.epa.gov/iriswebp/iris/subst/0356.htm

  57. European Food Safety Authority (EFSA) (2006) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to 2,2-bis(4-hydroxyphenyl)propane. EFSA Journal 428:1–6

    Google Scholar 

  58. Health Canada (2008) Health Risk Assessment of Bisphenol A from Food Packaging Applications. http://www.hc-sc.gc.ca/fn-an/securit/packag-emball/bpa/bpa_hra-ers-eng.php

  59. Yoshida T, Horie M, Hoshino Y, Nakazawa H (2001) Determination of bisphenol A in canned vegetables and fruit by high performance liquid chromatography. Food Addit Contam 18:69–75

    Article  CAS  Google Scholar 

  60. Goodson A, Summerfield W, Cooper I (2002) Survey of bisphenol A and bisphenol F in canned foods. Food Addit Contam 19:796–802

    Article  CAS  Google Scholar 

  61. Thomson BM, Grounds PR (2005) Bisphenol A in canned foods in New Zealand: an exposure assessment. Food Addit Contam 22:65–72

    Article  CAS  Google Scholar 

  62. Biles JE, McNeal TP, Begley TH (1997) Determination of bisphenol A migrating from epoxy can coatings to infant formula liquid concentrates. J Agric Food Chem 45:4697–4700

    Article  CAS  Google Scholar 

  63. Kang J-H, Kondo F (2003) Determination of bisphenol A in milk and dairy products by high-performance liquid chromatography with fluorescence detection. J Food Protect 66:1439–43

    CAS  Google Scholar 

  64. Kuo H-W, Ding W-H (2004) Trace determination of bisphenol A and phytoestrogens in infant formula powders by gas chromatography-mass spectrometry. J Chromatogr A 1027:67–74

    Article  CAS  Google Scholar 

  65. Kang J-H, Kondo F (2002) Bisphenol A migration from cans containing coffee and caffeine. Food Addit Contam 19:886–890

    Article  CAS  Google Scholar 

  66. Maragou NC, Lampi EN, Thomaidis NS, Koupparis MA (2006) Determination of bisphenol A in milk by solid phase extraction and liquid chromatography-mass spectrometry. J Chromatogr A 1129:165–173

    Article  CAS  Google Scholar 

  67. Munguia-Lopez EM, Gerardo-Lugo S, Peralta E, Bolymen S, Soto-Valdez H (2005) Migration of bisphenol A (BPA) from can coatings into a fatty-food stimulant and tuna fish. Food Addit Contam 22:892–898

    Article  CAS  Google Scholar 

  68. Government of Canada (2008) Screening Assessment for The Challenge Phenol, 4,4' -(1-methylethylidene)bis-(Bisphenol A) Chemical Abstracts Service Registry Number 80-05-7. http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_80-05-7.cfm

  69. http://www.gazette.gc.ca/rp-pr/p2/2010/2010-03-31/html/sor-dors53-eng.html

  70. http://www.hc-sc.gc.ca/fn-an/securit/packag-emball/bpa/bpa_hra-ers-eng.php#a4

  71. Cao X-L, Dufresne G, Belisle S, Clement G, Falicki M, Beraldin F, Rulibikiye A (2008) Levels of bisphenol A in canned liquid infant formula products in Canada and dietary intake estimates. J Agric Food Chem 56:7919–7924

    Article  CAS  Google Scholar 

  72. Health Canada (2009) Survey of bisphenol A in canned powdered infant formula products. http://www.hc-sc.gc.ca/fn-an/securit/packag-emball/bpa/bpa_survey-summ-enquete-pow-pou-eng.php

  73. Cao X-L, Corriveau J, Popovic S (2009) Levels of bisphenol A in canned soft drink products in Canadian markets. J Agric Food Chem 57:1307–1311

    Article  CAS  Google Scholar 

  74. Cao X-L, Corriveau J, Popovic S, Clement G, Beraldin F, Dufresne G (2009) Bisphenol A in baby food products contained in glass jars with metal lids from Canadian markets. J Agric Food Chem 57:5345–5351

    Article  CAS  Google Scholar 

  75. Cao X-L, Corriveau J, Popovic S. (2010a) Bisphenol A in canned food products from Canadian markets. J Food Protection, in press

  76. Cao X-L, Corriveau J (2008) Determination of bisphenol A in water by isotope dilution headspace solid-phase microextraction and gas chromatography/mass spectrometry without derivatization. J AOAC Intern 91:622–629

    CAS  Google Scholar 

  77. Cao X-L, Corriveau J (2008) Migration of bisphenol A from polycarbonate baby and water bottles to water under severe conditions. J Agric Food Chem 56:6378–6381

    Article  CAS  Google Scholar 

  78. Cao X-L, Corriveau J (2008) Survey of bisphenol A in bottled water products in Canada. Food Addit Contam Part B 1:161–164

    Article  CAS  Google Scholar 

  79. Cao X-L, Corriveau J, Popovic S (2010b) Sources of low levels of bisphenol A in canned beverage products. J Food Protection, in press

  80. Dobson RLM, Motlagh S, Quijano M, Cambron RT, Baker TR, Pullen AM, Regg BT, Bigalow-Kern AS, Vennard T, Fix A, Reimschuessel R, Overmann G, Shan Y, Daston GP (2008) Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs. Toxicol Sci 106:251–262

    Article  CAS  Google Scholar 

  81. Gossner CM-E, Schlundt J, Ben Embarek P, Hird S, Lo-Fo-Wong D, Beltran JJO, Teoh KN, Tritscher A (2009) The melamine incident: implications for international food and feed safety. Environ Health Perspect 117:1803–1808

    CAS  Google Scholar 

  82. Andersen WC, Turnipseed SB, Karbiwnyk CM, Clark SB, Madson MR, Gieseker CM, Miller RA, Rummel NG, Reimschuessel R (2008) Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry. J Agric Food Chem 56:4340–4347

    Article  CAS  Google Scholar 

  83. Yokley RA, Mayer LC, Rezaaiyan R, Manuli ME, Cheung MW (2000) Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. J Agric Food Chem 48:3352–3358

    Article  CAS  Google Scholar 

  84. Lund KH, Petersen JH (2006) Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic. Food Addit Contam 23:948–955

    Article  CAS  Google Scholar 

  85. Braekevelt E, Lau BPY, Feng S, Ménard C, Tittlemier SA (2011) Determination of melamine, ammeline, ammelide and cyanuric acid in infant formula purchased in Canada by liquid chromatography–tandem mass spectrometry. Food Addit Contam 28:698–704

    Article  CAS  Google Scholar 

  86. Varelis P, Jeskelis R (2008) Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry. Food Addit Contam 25:1208–1215

    Article  CAS  Google Scholar 

  87. Karbiwnyk CM, Andersen WC, Turnipseed SB, Storey JM, Madson MR, Miller KE, Gieseker CM, Miller RA, Rummel NG, Reimschuessel R (2009) Determination of cyanuric acid residues in catfish, trout, tilapia, salmon and shrimp by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 637:101–111

    Article  CAS  Google Scholar 

  88. Tittlemier SA, Lau BPY, Ménard C, Corrigan C, Sparling M, Gaertner D, Pepper K, Feeley M (2009) Melamine in infant formula sold in Canada: occurrence and risk assessment. J Agric Food Chem 57:5340–5344

    Article  CAS  Google Scholar 

  89. Ehling S, Tefera S, Ho IP (2007) High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid. Food Addit Contam 24:1319–1325

    Article  CAS  Google Scholar 

  90. Filigenzi MS, Puschner B, Aston LS, Poppenga RH (2008) Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry. J Agric Food Chem 56:7593–7599

    Article  CAS  Google Scholar 

  91. Heller DN, Nochetto CB (2008) Simultaneous determination and confirmation of melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry. Rapid Commun Mass Spectrom 22:3624–3632

    Article  CAS  Google Scholar 

  92. Muñiz-Valencia R, Ceballos-Magaña SG, Rosales-Martinez D, Gonzalo-Lumbreras R, Santos-Montes A, Cubedo-Fernandez-Trapiella A, Izquierdo-Hornillos RC (2008) Method development and validation for melamine and its derivatives in rice concentrates by liquid chromatography. Application to animal feed samples. Anal Bioanal Chem 392:523–531

    Article  CAS  Google Scholar 

  93. Sancho JV, Ibáñez M, Grimalt S, Pozo ÓJ, Hernández F (2005) Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chim Acta 530:237–243

    Article  CAS  Google Scholar 

  94. Miao H, Fan S, Wu Y-N, Zhang L, Zhou P-P, Li J-G, Chen H-J, Zhao Y-F (2009) Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomed Environ Sci 22:87–94

    Article  Google Scholar 

  95. Garber EAE (2008) Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J Food Prot 71:590–594

    CAS  Google Scholar 

  96. Huang G, Ouyang Z, Cooks RG (2009) High-throughput trace melamine analysis in complex mixtures. Chem Comm 2009:556–558

    Article  CAS  Google Scholar 

  97. Zhu L, Gamez G, Chen H, Chingina K, Zenobi R (2009) Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chem Comm 2009:559–561

    Article  CAS  Google Scholar 

  98. World Health Organization. Toxicological and health aspects of melamine and cyanuric acid (2009) World Health Organization, Geneva

  99. Lachenmeier DW, Humpfer E, Fang F, Schütz B, Dvortsak P, Sproll C, Spraul M (2009) NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: the example of melamine. J Agric Food Chem 57:7194–7199

    Article  CAS  Google Scholar 

  100. Vallack HW, Bakker DJ, Brandt I, Broström-Lundén E, Brouwer A, Bull KR, Grough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RDF (1998) Controlling persistent organic pollutants – what next. Environ Toxicol Pharmacol 6:143–175

    Article  CAS  Google Scholar 

  101. Durand B, Dufour B, Fraisse D, Defour S, Duhem K, Le-Barillec K (2008) Levels of PCDDs, PCDFs and dioxin-like PCBs in raw cow’s milk collected from France in 2006. Chemosphere 70:689–693

    Article  CAS  Google Scholar 

  102. Behrooz RD, Sari AE, Bahramifar N, Naghdi F, Shahriyari AR (2009) Organochlorine pesticides and polychlorinated biphenyl residues in human milk from Tabriz, Iran. Toxicol Environ Chem 91:1455–1468

    Article  CAS  Google Scholar 

  103. Stockholm Convention Secretariat (2010) Stockholm convention on persistent organic pollutants (POPs). What are POPs? http://chm.int/Convention/The POPs/tabid/673/language/en-US/Default.aspx. Accessed 28 June 2010

  104. Covaci A, Voorspoels S, Vetter W, Gelbin A, Jorens PG, Blust R, Neels H (2007) Anthropogenic and naturally occurring organobrominated compounds in fish oil dietary supplements. Environ Sci Technol 41:5237–5244

    Article  CAS  Google Scholar 

  105. Huwe JK (2002) Dioxins in food: A modern agricultural perspective. J Agric Food Chem 50:1739–1750

    Article  CAS  Google Scholar 

  106. Van Oostdam J, Gilman A, Dewailly E, Usher P, Wheatley B, Kuhnlein H, Neve S, Walker J, Tracy B, Feeley M, Jerome V, Kwavnick B (1999) Human health implications of environmental contaminants in Arctic Canada: a review. Sci Tot Environ 230:1–82

    Article  Google Scholar 

  107. Van Den Berg M, Birnbaum L, Bosveld ATC, Brunström B, Cook P, Feeley M, Geisy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leewen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Wærn F, Zacharewski T (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Article  Google Scholar 

  108. Van Den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher AJ, Tuomisto M, Tysklind N, Walker, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241

    Article  CAS  Google Scholar 

  109. Schecter A, Dellarco M, Päpke O, Olson J (1998) A comparison of dioxins, dibenzofurans and coplanar PCBs in uncooked and broiled ground beef, catfish and bacon. Chemosphere 37:1723–1730

    Article  CAS  Google Scholar 

  110. Manthey, C, Chiles B. and Mateel Environmental Justice Foundation Plaintiffs. (2009) http://org2.democracyinaction.org/o/6491/p/salsa/web/common/public/content?content_ite. Accessed 26 April, 2010

  111. Schecter A, Harris TR, Shah N, Musumba A, Päpke O (2008) Brominated flame retardants in US food. Mol Nutr Food Res 52:266–272

    Article  CAS  Google Scholar 

  112. Darnerud PO, Atuma S, Aune M, Bjerselius R, Glynn A, Petersson K, Becker GW (2006) Dietary intake estimations of organohalogen contaminants (dioxins, PCB, PBDE and chlorinated pesticides, e.g. DDT) based on Swedish market basket data. Food Chem Toxicol 44:1597–1606

    Article  CAS  Google Scholar 

  113. Fernandes AR, Tlustos C, Smith F, Carr M, Petch R, Rose M (2009) Polybrominated diphenyl ethers (PBDEs) and brominated dioxins (PBDD/Fs) in Irish food of animal origin. Food Addit Contam Part B 2:86–94

    Article  CAS  Google Scholar 

  114. Voorspoels S, Covaci A, Neels H (2008) Dietary PCB intake in Belgium. Environ Toxicol Pharmacol 25:179–182

    Article  CAS  Google Scholar 

  115. Domingo JL (2004) Human exposure to polybrominated diphenyl ethers through the diet. J Chromatogr A 1054:321–326

    Article  CAS  Google Scholar 

  116. Kijlstra A, Traag WA, Hoogenboom LAP (2007) Effect of flock size on dioxin levels in eggs from chickens kept outside. Poultry Sci 86:2042–2048

    CAS  Google Scholar 

  117. Rawn DFK, Forsyth DS, Ryan JJ, Breakell K, Verigin V, Nicolidakis H, Hayward S, Laffey P, Conacher HBS (2006) PCB, PCDD and PCDF residues in fin and non-fin fish products from the Canadian retail market 2002. Sci Tot Environ 359:101–110

    Article  CAS  Google Scholar 

  118. Roosens L, Dirtu AC, Goemans G, Belpaire C, Gheorghe A, Neels H, Blust R, Covaci A (2008) Brominated flame retardants and polychlorinated biphenyls in fish from the river Scheldt. Belgium Environ Intern 34:976–983

    CAS  Google Scholar 

  119. Covaci A, Roosens L, Dirtu AG, Waegeneers N, Van Overmeire I, Neels H, Goeyens L (2009) Brominated flame retardants in Belgian home-produced eggs: levels and contamination sources. Sci Tot Environ 407:4387–4396

    Article  CAS  Google Scholar 

  120. Rawn DFK, Breakell K, Verigin V, Nicolidakis H, Sit D, Feeley M (2009) Persistent Organic Pollutants in Fish Oil Supplements on the Canadian Market: Polychlorinated biphenyls and organochlorine insecticides. J Food Sci 74:T14–T19

    Article  CAS  Google Scholar 

  121. Roosens L, Abdallah MA-E, Harrad S, Neels H, Covaci A (2009) Factors influencing concentrations of polybrominated diphenyl ethers (PBDEs) in students from Antwerp, Belgium. Environ Sci Technol 43:3535–3541

    Article  CAS  Google Scholar 

  122. Raab U, Preiss U, Albrecht M, Shahin N, Parlar H, Froome H (2008) Concentrations of polybrominated diphenyl ethers, organochlorine insecticides and nitro musks in mother’s milk from Germany (Bavaria). Chemosphere 72:87–94

    Article  CAS  Google Scholar 

  123. Fürst P (2006) Dioxins, polychlorinated biphenyls and other organohalogen compounds in human milk. Mol Nutr Food Res 50:922–933

    Article  CAS  Google Scholar 

  124. Fontcuberta M, Arqués JF, Villalbí JR, Martínez M, Centrich F, Serrahima E, Pineda L, Duran J, Casas C (2008) Chlorinated organic pesticides in marketed food: Barcelona, 2001–06. Sci Tot Environ 389:52–57

    Article  CAS  Google Scholar 

  125. Nardelli V, Palermo C, Centonze D (2004) Rapid multiresidue extraction method of organochlorinated pesticides from fish feed. J Chromatogr A 1034:33–40

    Article  CAS  Google Scholar 

  126. Schecter A, Päpke O, Harris TR, Tung KC, Musumba A, Olson J, Birnbaum L (2006) Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of U.S. food and estimated PBDE dietary intake by age and sex. Environ Health Perspect 114:1515–1520

    Article  CAS  Google Scholar 

  127. Llorca M, Farré M, Picó Y, Teijón ML, Álvarez JG, Barceló D (2010) Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food. Environ Intern 36:584–592

    Article  CAS  Google Scholar 

  128. Simsa P, Mihalyi A, Schoeters G, Koppen G, Kyama CM, Den Hond EW, Fülöp V, D’Hooghe TM (2010) Increased exposure to dioxin-like compounds is associated with endometriosis in a case-control study in women. Reprod Biomed Online. doi:10.1016/j.rbmo.2010.01.018

  129. Motzer WE (2001) Perchlorate: problems, detection, and solutions. Environ Forensics 2:301–311

    Article  CAS  Google Scholar 

  130. Dasgupta PK, Jason VD, Kirk AB, Jackson WA (2006) Perchlorate in the United States. Analysis of relative source contributions to the food chain. Environ Sci Technol 40:6608–6614

    Article  CAS  Google Scholar 

  131. Susarla S, Collette TW, Garrison AW, Wolfe NL, McCutcheon SC (1999) Perchlorate identification in fertilizer. Environ Sci Technol 33:3469–3472

    Article  CAS  Google Scholar 

  132. Rao B, Anderson TA, Orris GJ, Rainwater KA, Rajagopalan S, Sandvig RM, Scanlon BR, Stonestrom DA, Walvoord MA, Jackson WA (2007) Widespread natural perchlorate in unsaturated zones of the southwest united states. Environ Sci Technol 41:4522–4528

    Article  CAS  Google Scholar 

  133. Urbansky ET (2002) Perchlorate as an environmental contaminant. Environ Sci Pollut Res 9:187–192

    Article  CAS  Google Scholar 

  134. Kirk AB (2006) Environmental perchlorate: why it matters. Anal Chim Acta 567:4–12

    Article  CAS  Google Scholar 

  135. Health implications of perchlorate ingestion (2005) National Research Council National Academies Press. Washington, DC

  136. Sanchez CA, Crump KS, Krieger RI, Khandaker NR, Gibbs JP (2005) Perchlorate and nitrate in leafy vegetagles of North America. Environ Sci Technol 39:9391–9397

    Article  CAS  Google Scholar 

  137. Park JW, Rinchard J, Anderson TA, Liu F, Theodorakis CW (2005) Food Chain transfer of perchlorate in largemouth bass, micropterus salmoides. Bull Environ Contam Toxicol 74:56–63

    Article  CAS  Google Scholar 

  138. Snyder SA, Pleus RC, Vanderford BJ, Holady JC (2006) Perchlorate and chlorate in dietary supplements and flavor enhancing ingredients. Anal Chim Acta 567:26–32

    Article  CAS  Google Scholar 

  139. Martinelango PK, Tian K, Dasgupta PK (2006) Perchlorate in seawater bioconcentration of iodide and perchlorate by various seaweed species. Anal Chim Acta 567:100–107

    Article  CAS  Google Scholar 

  140. EI Aribi H, Le Blanc YJC, Antosen S, Sakuma T (2006) Analysis of perchlorate in foods and beverages by ion chromatography coupled with tandem mass spectrometry(IC-ESI-MS/MS). Anal Chim Acta 567:39–47

    Article  CAS  Google Scholar 

  141. Pearce EN, Leung AM, Blount BC, Bazrafshan HR, He X, Pino S, Valentin- Blasini L, Braverman LE (2006) Breast milk iodine and perchlroate concentrations in lactating Boston-area women. J Clin Endocrin Metabol 92:1673–1677

    Article  CAS  Google Scholar 

  142. Tellez TR, Michaud CP, Reyes AC, Blount BC, Van Landingham CB, Crump KS, Gibbs JP (2005) Long-term environmental exposure to perchlorate through drinking water and thyroid function during pregnancy and the neonatal period. Thyroid 15:963–975

    Article  CAS  Google Scholar 

  143. Dyke JV, ITO K, Obitsu T, Hisamatsu Y, Dasgupta PK, Blount BC (2007) Perchlorate in dairy milk: comparison of Japan versus the United States. Environ Sci Technol 41:88–92

    Article  CAS  Google Scholar 

  144. Shi Y, Zhang P, Wang Y, Shi J, Cai Y, Mou S, Jiang G (2007) Perchlorate in sewage sludge, rice, bottled water and milk collected from different areas in China. Environ Int 33:955–962

    Article  CAS  Google Scholar 

  145. Murray CW, Egan SK, Kim H, Beru N, Bolger PM (2008) US food and drug administration’s total diet study: dietary intake of perchlorate and iodine. J Exp Sci Environ Epidem 962:1–10

    Google Scholar 

  146. Schier JG, Wolkin AF, Valentin-Blasini L, Belson MG, Kieszak SM, Rubin CS, Blount BC (2009) Perchlorate exposure from infant formula and comparison with the perchlorate referenc dose. J Exp Sci Environ Epidem 1:1–7

    Google Scholar 

  147. Anderson TA, Wu TH (2002) Extraction, cleanup, and analysis of the perchlorate anion in tissue samples. Bull Environ Contam Toxicol 68:684–691

    Article  CAS  Google Scholar 

  148. Method 314.0 Determination of perchlorate in drinking water using ion chromatography. Revision 1.0, Environmental Protection Agency, Cincinnati, OH, 1999

  149. Method 331.0 Determination of perchlorate in drinking water by liquid chromatography electrospray ioniazation mass spectrometry. Revision 1.0, Environmental Protection Agency, Cincinnnati, OH, 2005

  150. Snyder SA, Vanderford BJ, Rexing DJ (2005) Trace analysis of bromated, chlorate, iodate, and perchlorate in natural and bottled waters. Environ Sci Technol 39:4586–93

    Article  CAS  Google Scholar 

  151. Krynitsky AJ, Niemann RA, Williams AD, Hopper ML (2006) Streamlined sample preparation procedure for determination of perchlroate anion in foods by ion chromatography-tandem mass spectrometry. Anal Chim Acta 567:94–99

    Article  CAS  Google Scholar 

  152. Backus SM, Klawuun PS, D’sa I, Sharp S, Surette C, Williams DJ (2005) Determination of perchlorate in selected surface waters in the great lakes basin by HPLC/MS/MS. Chemosphere 61:834–843

    Article  CAS  Google Scholar 

  153. Srinivasan A, Viraraghavan T (2009) Perchlorate: Health effects and technologies for its removal from water resources. Int Environ Res Public Health 6:1418–1442

    Article  CAS  Google Scholar 

  154. Fazio T, Warner CR (1990) A review of sulphites in foods: analytical methodlogy and reported findings. Food Addit Contam 7:433–454

    Article  CAS  Google Scholar 

  155. Lester MR (1995) Sulfite sensitivity: significance in human health. J Am Coll Nutr 14:229–232

    CAS  Google Scholar 

  156. Food US, Administration D (1986) Sulphating agents: revocation of GRAS status for use on fruits and vegetables intended to be served or sold raw to consumers. Fed Regist 51:25021–25026

    Google Scholar 

  157. Regulations amending the food and drug regulations (1220-enhaced labelling for food allergen and gluten sources and added sulphites (2008) Canada Gazette Part I July 26, 2276

  158. Official Methods of Analysis (2000) Sulfites in foods, optimized Monier-Williams method. 17th Ed, AOAC Int, Gaithersburg, MD, Method 990.28

  159. Yaqoob M, Nabi A, Waseem A, Masoon-Yasinzai M (2004) Determination of sulphite using an immobilized enzyme with flow injection chemiluminescence detection. Luminescence 19:26–30

    Article  CAS  Google Scholar 

  160. McFeeters RF, Barish AO (2003) Sulfiteanalysis of fruits and vegetables by high-performance liquid chromatography (HPLC) with ultraviolet spectrophotometric detection. J Agric Food Chem 51:1513–1517

    Article  CAS  Google Scholar 

  161. de Carvalho LM, Schwedt G (2001) Polarographic determination of dithionite and its decomposition products: kinetic aspects, stabilizers and analytical application. Anal Chim Acta 436:293–300

    Article  Google Scholar 

  162. Masar M, Dankova M, Olvecka E, Stachurova A, Kaniansky D, Stanislawski B (2004) Determination of free sulfite in wine by zone electrophoresis with isotachophoresis sample pretreatment on a column-coupling chip. J Chromatogr A 1026:31–39

    Article  CAS  Google Scholar 

  163. Claudia RC, Francisco JC (2009) Application of flow injection analysis for determination sulphites in food and beverages: A review. Food Chem 112:487–493

    Article  CAS  Google Scholar 

  164. Safavi A, Haghighi B (1997) Flow injection of sulphite by gas-phase molecular absorption UV/VIS spectrophotometry. Talanta 44:1009–1016

    Article  CAS  Google Scholar 

  165. Scotter MJ, Castle L (2004) Chemical interanctions between additives in foodstuffs: a review. Food Addit Contam 21:93–124

    Article  CAS  Google Scholar 

  166. Michigami Y, Morooka M, Ueda K (1996) Determination of sulphite and sulphate by ion chromatography using a weakly basic phthalate eluent. J Chromatogr A 732:403–407

    Article  CAS  Google Scholar 

  167. Warner CR, Daniels DH, Fitzgerald MC, Joe FL Jr, Diachenko GW (1990) Determination of free and reversibly bound sulphite in foods by reverse-phase, ion-pairing high-performance liquid chromatography. Food Addit Contam A 7(575):581

    Google Scholar 

  168. O’Reilly JW, Dicinoski GW, Shaw MJ, Haddad PR (2001) Chromatographic and electrophoretic separation of inorganic sulfur and sulfur-oxygen species. Anal Chim Acta 432:165–192

    Article  Google Scholar 

  169. Wang Z, Sparling M, Forsyth D (2010) Sulfur Speciation Analysis by Ion-Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry. Oral Presentation Feb 28-Mar 5, 2010, Pittcon, Orlando

  170. Heinzel MA, Truper HG (1978) Sulfite formation by wine yeasts. Arch Microbiol 118:243–247

    Article  CAS  Google Scholar 

  171. Heilmann J, Heumann KG (2008) Development of a species-unspecific isotope dilution GC/ICP/MS method for possible routine quantification of sulfur species in petroleum products. Anal Chem 80:1952–1961

    Article  CAS  Google Scholar 

  172. Wai S, Chung C, Chan BTP, Chan ACM (2008) Determination of free and reversibly-bound sulfite in selected foods by high-performance liquid chromatography with fluorometric detection. J AOAC Int 91:98–102

    Google Scholar 

  173. Boatright W, Lei Q, Stine C (2006) Sulfite formation in isolated soy proteins. J Food Sci 71:115–119

    Article  Google Scholar 

  174. Shephard GS, Berthiller F, Dorner J, Krska R, Lombaert GA, Malone B, Maragos C, Sabino M, Solfrizzo M, Trucksess MW, van Egmond HP, Whitaker TB (2010) Developments in mycotoxin analysis: an update for 2009–2010. World Mycotoxin J 3:3–23

    Article  CAS  Google Scholar 

  175. Maragos CM, Busman M (2010) Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contam A 27:688–700

    Article  CAS  Google Scholar 

  176. Bayman P, Baker JL (2006) Ochratoxins: a global perspective. Mycopathologia 162:215–223

    Article  CAS  Google Scholar 

  177. Clark Clark HA, Snedeker SM (2006) Ochratoxin A: its cancer risk and potential for exposure. J Toxicol Environ Health B 9:265–296

    Article  CAS  Google Scholar 

  178. O’Brien E, Dietrich DR (2005) Ochratoxin A: The continuing enigma. Crit Rev Toxicol 35:33–60

    Article  CAS  Google Scholar 

  179. International Agency for Research on Cancer (IARC) (1993) Monographs on the evaluation of carcinogenic risks to humans number 56. IARC Press, Lyon, France, pp 489–521

    Google Scholar 

  180. Tafuri A, Meca G, Ritieni A (2008) A rapid high-performance liquid chromatography with fluorescence detection method developed to analyze ochratoxin A in wine. J Food Protect 71:2133–2137

    CAS  Google Scholar 

  181. Romero-González R, Vidal JLM, Aguilera-Luiz MM (2010) Determination of ochratoxin A and T-2 toxin in alcoholic beverages by hollow fiber liquid phase microextraction and ultra high-pressure liquid chromatography coupled to tandem mass spectrometry. Talanta 82:171–176

    Article  CAS  Google Scholar 

  182. Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Persp 109(suppl 2):239–243

    CAS  Google Scholar 

  183. Jackson L, Jablonski J (2004) Fumonisins. In: Nagan M, Olsen M (eds) Mycotoxins in food: Detection and control. Woodhead, Cambridge, pp 367–405

    Chapter  Google Scholar 

  184. Månsson M, Klejnstrup ML, Phipps RK, Nielsen KF, Frisvad JC, Gotfredsen CH, Larsen TO (2010) Isolation and NMR characterization of fumonisin B2 and a new fumonisin B6 from Aspergillus niger. J Agric Food Chem 58:949–953

    Article  CAS  Google Scholar 

  185. Mogensen JM, Larsen TO, Nielsen KF (2010) Widespread occurrence of the mycotoxin fumonisin B2 in wine. J Agric Food Chem 58:4853–4857

    Article  CAS  Google Scholar 

  186. Bartók T, Tölgyesi L, Szekeres A, Varga M, Bartha R, Szécsi A, Bartók M, Mesterházy A (2010) Detection and characterization of twenty-eight isomers of fumonisin B1 (FB1) mycotoxin in a solid rice culture infected with Fusarium verticillioides by reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight and ion trap mass spectrometry. Rapid Commun Mass Spectrom 24:35–42

    Article  CAS  Google Scholar 

  187. Gazzotti T, Lugoboni B, Zironi E, Barbarossa A, Serraino A, Pagliuca G (2009) Determination of fumonisin B1 in bovine milk by LC–MS/MS. Food Control 20:1171–1174

    Article  CAS  Google Scholar 

  188. Songsermsakul P, Razzazi-Fazeli E (2008) A review of recent trends in applications of liquid chromatography-mass spectrometry for determination of mycotoxins. J Liq Chromatogr Rel Technol 31:1641–1686

    Article  CAS  Google Scholar 

  189. Monbaliu S, Van Poucke C, Detavernier C, Dumoulin F, Van De Velde M, Schoeters E, Van Dyck S, Averkieva O, Van Peteghem C, De Saeger S (2010) Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. J Agric Food Chem 58:66–71

    Article  CAS  Google Scholar 

  190. Wang S, Quan Y, Lee N, Kennedy IR (2006) Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem 54:2491–2495

    Article  CAS  Google Scholar 

  191. Molinelli A, Grossalber K, Krska R (2009) A rapid lateral flow test for the determination of total type B fumonisins in maize. Anal Bioanal Chem 395:1309–1316

    Article  CAS  Google Scholar 

  192. De Smet D, Dubruel P, Van Peteghem C, Schacht E, De Saeger S (2009) Molecularly imprinted solid-phase extraction of fumonisin B analogues in bell pepper, rice and corn flakes. Food Addit Contam A 26:874–884

    Article  CAS  Google Scholar 

  193. Muscarella M, Magro SL, Nardiello D, Palermo C, Centonze D (2008) Development of a new analytical method for the determination of fumonisins B1 and B2 in food products based on high performance liquid chromatography and fluorimetric detection with post-column derivatization. J Chromatogr A 1203:88–93

    Article  CAS  Google Scholar 

  194. Dall’Asta C, Mangia M, Berthiller F, Molinelli A, Sulyok M, Schuhmacher R, Krska R, Galaverna G, Dossena A, Marchelli R (2009) Difficulties in fumonisin determination: the issue of hidden fumonisins. Anal Bioanal Chem 395:1335–1345

    Article  CAS  Google Scholar 

  195. Oh KS, Scott PM, Chung SH (2009) Incomplete recoveries of fumonisins present in naturally contaminated corn foods from an immunoaffinity column. J AOAC Int 92:496–501. Erratum in: J AOAC Int 92:203A

    Google Scholar 

  196. Kim EK, Scott PM, Lau BP (2003) Hidden fumonisin in corn flakes. Food Addit Contam 20:161–169. Erratum in. Food Addit Contam 20:417

    Article  CAS  Google Scholar 

  197. Park JW, Scott PM, Lau BP, Lewis DA (2004) Analysis of heat-processed corn foods for fumonisins and bound fumonisins. Food Addit Contam 21:1168–1178

    Article  CAS  Google Scholar 

  198. Motta EL, Scott PM (2009) Bioaccessibility of total bound fumonisin from corn flakes. Mycotoxin Res 25:229–232

    Article  CAS  Google Scholar 

  199. Hungerford JM (2010) Marine and freshwater toxins. J AOAC Int 93:6B–9B

    Google Scholar 

  200. Hess P (2010) Requirements for screening and confirmatory methods for the detection and quantification of marine biotoxins in end-product and official control. Anal Bioanal Chem 397:1683–1694

    Article  CAS  Google Scholar 

  201. Humpage AR, Magalhaes VF, Froscio SM (2010) Anal Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Bioanal Chem 397:1655–1671

    Article  CAS  Google Scholar 

  202. Chan IO, Lam PK, Cheung RH, Lam MH, Wu RS (2005) Application of solid phase microextraction in the determination of paralytic shellfish poisoning toxins. Analyst 130:1524–1559

    Article  CAS  Google Scholar 

  203. Oehrle SA, Southwell B, Westrick J (2009) Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry. Toxicon 55:965–972

    Article  CAS  Google Scholar 

  204. Falconer IR, Humpage AR (2006) Cyanobacterial (blue-green algal) toxins in water supplies: Cylindrospermopsins. Environ Toxicol 21:299–304

    Article  CAS  Google Scholar 

  205. Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80

    Article  CAS  Google Scholar 

  206. Bláhová L, Oravec M, Maršálek B, Šejnohová L, Šimek Z, Bláha L (2009) The first occurrence of the cyanobacterial alkaloid toxin cylindrospermopsin in the Czech Republic as determined by immunochemical and LC/MS methods. Toxicon 53:519–524

    Article  CAS  Google Scholar 

  207. Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 55:930–938

    Article  CAS  Google Scholar 

  208. Messineo V, Melchiorre S, Di Corcia A, Gallo P, Bruno M (2010) Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy. Environ Toxicol 25:18–27

    CAS  Google Scholar 

  209. Kokociński M, Dziga D, Spoof L, Stefaniak K, Jurczak T, Mankiewicz-Boczek J, Meriluoto J (2009) First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere 74:669–675

    Article  CAS  Google Scholar 

  210. Fastner J, Rücker J, Stüken A, Preuβel K, Nixdorf B, Chorus I, Köhler A, Wiedner C (2007) Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ Toxicol 22:26–32

    Article  CAS  Google Scholar 

  211. Metcalf JS, Codd GA (2009) Cyanobacteria, neurotoxins and water resources: are there implications for human neurodegenerative disease? Amyotroph Lateral Scler 10(Suppl 2):74–78

    Article  CAS  Google Scholar 

  212. Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074–5078. Erratum in: Proc Natl Acad Sci USA 102:9734

    Google Scholar 

  213. Brand LE, Pablo J, Compton A, Hammerschlag N, Mash DC (2010) Cyanobacterial blooms and the occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida aquatic food webs. Harmful Algae 9:620–635

    Article  CAS  Google Scholar 

  214. Banack SA, Johnson HE, Cheng R, Cox PA (2007) Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs 5:180–196

    Article  CAS  Google Scholar 

  215. Scott PM, Niedzwiadek B, Rawn DFK, Lau BP-Y (2009) Liquid chromatographic determination of the cyanobacterial toxin β-N-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water. J Food Protect 72:1769–1763

    CAS  Google Scholar 

  216. Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118:159–165

    Article  CAS  Google Scholar 

  217. Roney BR, Li R, Banack SA, Murch S, Honegger R, Cox PA (2009) Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China? Amyotroph Lateral Scler 10(Suppl 2):44–49

    Article  CAS  Google Scholar 

  218. Faassen EJ, Gillissen F, Zweers HAJ, Lürling M (2009) Determination of the neurotoxins BMAA (beta-N-methylamino-L-alanine) and DAB (alpha-, gamma-diaminobutyric acid) by LC-MS/MS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10(Suppl 2):79–84

    Article  CAS  Google Scholar 

  219. Krüger T, Mönch B, Oppenhäuser S, Luckas B (2010) LC–MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55:547–556

    Article  CAS  Google Scholar 

  220. Sampson HA (2004) Update on food allergy. J Allergy Clin Immun 113:805–819

    Article  CAS  Google Scholar 

  221. van Heel DA, West J (2006) Recent advances in coeliac disease. Gut 55:1037–1046

    Article  CAS  Google Scholar 

  222. Scaravelli E, Brohée M, Marchelli R, van Hengel AJ (2009) The effect of heat treatment on the detection of peanut allergens as determined by ELISA and real-time PCR. Anal Bioanal Chem 395:127–137

    Article  CAS  Google Scholar 

  223. Mondoulet L, Paty E, Drumare MF, Ah-Leung P, Scheinmann P, Willemot RM, Wal JM, Bernard H (2005) Influence of Thermal Processing on the Allergenicity of Peanut Proteins. J Agric Food Chem 53:4547–4553

    Article  CAS  Google Scholar 

  224. Lee P-W, Niemann LM, Lambrecht DM, Nordlee JA, Taylor SL (2009) Detection of Mustard, Egg, Milk, and Gluten in Salad Dressing Using Enzyme-Linked Immunosorbent Assays (ELISAs). J Food Sci 74:T46–T50

    Article  CAS  Google Scholar 

  225. Armentia A, Dueñas-Laita A, Pineda F, Herrero M, Martín B (2010) Vinegar decreases allergenic response in lentil and egg food allergy. Allergol Immunopath 38:74–77

    Article  CAS  Google Scholar 

  226. Osman AA, Uhlig HH, Valdes I, Amin M, Méndez E, Mothes T (2001) A monoclonal antibody that recognizes a potential coeliac-toxic repetitive pentapeptide epitope in gliadins. Eur J Gastroen Hepat 13:1189–1193

    Article  CAS  Google Scholar 

  227. Skerritt JH, Hill AS (1990) Monoclonal antibody sandwich enzyme immunoassays for determination of gluten in foods. J Agric Food Chem 38:1771–1778

    Article  CAS  Google Scholar 

  228. van Eckert R, Berghofer E, Ciclitira PJ, Chirdo F, Denery-Papini S, Ellis HJ, Ferranti P, Goodwin P, Immer U, Mamone G, Méndez E, Mothes T, Novalin S, Osman A, Rumbo M, Stern M, Thorell L, Whim A, Wieser H (2006) Towards a new gliadin reference material-isolation and characterisation. J Cereal Sci 43:331–341

    Article  CAS  Google Scholar 

  229. Wieser H, Koehler P (2009) Is the calculation of the gluten content by multiplying the prolamin content by a factor of 2 valid? Eur Food Res Technol 229:9–13

    Article  CAS  Google Scholar 

  230. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  231. Bland JM, Lax AR (2000) Isolation and characterization of a peanut maturity-associated protein. J Agric Food Chem 48:3275–3279

    Article  CAS  Google Scholar 

  232. Nilsson I, Utt M, Nilsson H-O, Ljungh Å, Wadström T (2000) Identification of peanut and hazelnut allergens by native two-dimensional gel electrophoresis. Electrophoresis 21:2678–2683

    Article  Google Scholar 

  233. Shefcheck KJ, Musser SM (2004) Confirmation of the Allergenic Peanut Protein, Ara h 1, in a Model Food Matrix Using Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) J. Agric Food Chem 52:2785–2790

    Article  CAS  Google Scholar 

  234. Weber D, Raymond P, Ben-Rejeb S, Lau B (2006) Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. J Agric Food Chem 54:1604–1610

    Article  CAS  Google Scholar 

  235. Shefcheck K, Callahan JH, Musser SM (2006) Confirmation of peanut protein using peptide markers in dark chocolate using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Agric Food Chem 54:7953–7959

    Article  CAS  Google Scholar 

  236. Olsen JV, Ong S-E, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Prot 3:608–614

    Article  CAS  Google Scholar 

  237. Rodriguez J, Gupta N, Smith RD, Pevzner PA (2008) Does trypsin cut before proline? J Prot Res 7:300–305

    Article  CAS  Google Scholar 

  238. Kottapalli KR, Payton P, Rakwal R, Agrawal GK, Shibato J, Burow M, Puppala N (2008) Proteomics analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci 175:321–329

    Article  CAS  Google Scholar 

  239. Schmidt H, Gelhaus C, Latendorf T, Nebendahl M, Petersen A, Krause S, Leippe M, Becker W-M, Janssen O (2009) 2-D DIGE analysis of the proteome of extracts from peanut variants reveals striking differences in major allergen contents. Proteomics 9:3507–3521

    Article  CAS  Google Scholar 

  240. Sealey-Voyksner JA, Khosla C, Voyksner RD, Jorgenson JW (2010) Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography-mass spectrometry/mass spectrometry. J Chromatogr A 1217:4167–4183

    Article  CAS  Google Scholar 

  241. Abbott M, Hayward S, Ross W, Godefroy SB, Ulberth F, Van Hengel AJ, Roberts J, Akiyama H, Popping B, Yeung JM, Wehling P, Taylor SL, Poms RE, Delahaut P (2010) Validation procedures for quantitative food allergen ELISA methods: Community guidance and best practices. J AOAC Int 93:442–450

    CAS  Google Scholar 

Download references

Acknowledgements

This article was written as a result of a one-year tenure of the first author at the Food Research Division of Health Canada’s Bureau of Chemical Safety. In this respect, the first author would like to express his great gratitude to Dr Samuel Godefroy, John Salminen, Barbara Lee, and all members of the FRD for their great support and enthusiasm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Forsyth.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krska, R., Becalski, A., Braekevelt, E. et al. Challenges and trends in the determination of selected chemical contaminants and allergens in food. Anal Bioanal Chem 402, 139–162 (2012). https://doi.org/10.1007/s00216-011-5237-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5237-3

Keywords

Navigation