Skip to main content
Log in

Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is heterogeneity in the way cyanobacteria respond to P starvation and subsequently how they adapt to environments with low or fluctuating P concentrations. In this study, we have fused the promoterless lux operon luxCDABE to the promoter regions of Anabaena sp. PCC 7120 phoA genes putatively encoding alkaline phosphatases, phoA (all2843) and phoA-like (alr5291) and to the promoter region of one operon putatively encoding a high affinity phosphate transporter pst1 (all4575-4572). The self-bioluminescent strains constructed in this way, Anabaena AP (phoA promoter), Anabaena AP-L (phoA-like promoter), and Anabaena PST (pst1 promoter) have been used to study the expression of these genes in response to P starvation and P re-feeding with inorganic and organic phosphate sources. Our data showed that the pst1 promoter was activated at much higher level than the phoA-like promoter following P starvation; however, we did not observe activation of the phoA promoter. The P re-feeding experiments revealed that both strains, Anabaena (A.) PST and A. AP-L could be used as novel bioreporters of P availability in environmental samples. Both strains were used to estimate bioavailable P in environmental samples (fresh- and wastewaters) with a wide range of soluble P concentrations. The results indicated that most of the P in the water samples was in chemical forms available to the cyanobacterium; however there were some differences in the estimates given by both strains as A. PST appeared to be more adequate for the samples with the lowest P load while A. AP-L gave similar or even higher values of P concentrations than those chemically measured in samples with higher P load.

Schematic representation of the cellular elements involved in the Pho regulon in most cyanobacteria. The micrograph shows a filament of an Anabaena P-bioavailability bioreporter where P-responses are coupled to a luminescent signal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whitton BA (2008) Cyanobacterial diversity in relation to the environment. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds) Algal toxins: nature, occurrence. Effect and detection. NATO science for peace and security series A—chemistry and biology. Springer, Dordrecht, pp 17–43

    Chapter  Google Scholar 

  2. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015

    Article  CAS  Google Scholar 

  3. CEC. Council of European Communities (2000) Water Framework Directive (2000/60/EC). Official J;L327/72

  4. Mainstone CP, Parr W (2002) Phosphorus in rivers—ecology and management. Sci Total Environ 282:25–47

    Article  Google Scholar 

  5. Bachmann T (2003) Transforming cyanobacteria into bioreporters of biological relevance. Trends Biotechnol 21(6):247–249

    Article  CAS  Google Scholar 

  6. Bullerjahn GS, Boyanapalli R, Rozmarynowycz MJ, McKay RM (2010) Cyanobacterial bioreporters as sensors of nutrient availability. Adv Biochem Eng Biotechnol 118:165–188

    CAS  Google Scholar 

  7. Gillor O, Hadas O, Post A, Belkin S (2002) Phosphorus bioavailability monitoring by a bioluminescent cyanobacterial sensor strain. J Phycol 38:107–115

    Article  Google Scholar 

  8. Gillor O, Hadas O, Post A, Belkin S (2010) Phosphorus and nitrogen in a monomictic freshwater lake: employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshw Biol 55:1182–1190

    Article  CAS  Google Scholar 

  9. Neal C, Jarvie HP, Withers PJ, Whitton BA, Neal M (2010) The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Sci Total Environ 408(7):1485–1500

    Article  CAS  Google Scholar 

  10. Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth Sci Rev 51(1–4):109–135

    Article  CAS  Google Scholar 

  11. Bostrom B, Persson G, Broberg B (1988) Bioavaliability or different phosphorus forms in fresh-water systems. Hydrobiologia 170:133–155

    Article  Google Scholar 

  12. Pierzynski GM, Editor (2000) Methods of phosphorus Analysis for Soils, Sediments, Residuals and Waters. Southern Cooperative Series Bulletin No #396:SERA-IEG 2000 [http//wwwsera17extvtedu/Documents/Methods of P Analysis 2000.pdf]

  13. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26(1):31–36

    Article  Google Scholar 

  14. Worsfold PJ, Gimbert LJ, Mankasingh U, Omaka ON, Hanrahan G, Gardolinski P, Haygarth PM, Turner BL, Keith-Roach MJ, McKelvie ID (2005) Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta 66(2):273–293

    Article  CAS  Google Scholar 

  15. Cooper WT, Llewelyn JM, Bennett GL, Salters VJM (2005) Mass spectrometry of natural organic phosphorus. Talanta 66(2):348–358

    Article  CAS  Google Scholar 

  16. Sobeck SA, Ebeling DD (2007) Mass Spectrometric Analysis for Phosphate in Soil Extracts; Comparison of Mass Spectrometry, Colorimetry, and Inductively Coupled Plasma. Anal Sci Dig Lib E-UGR (2007) [wwwasdliborg/eUGHUploads/49_eUGH_publication.pdf]

  17. Hoppe HG (2003) Phosphatase activity in the sea. Hydrobiologia 493(1–3):187–200

    Article  CAS  Google Scholar 

  18. Mateo P, Berrendero E, Perona E, Loza V, Whitton BA (2010) Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia 652(1):255–268

    Article  CAS  Google Scholar 

  19. Diplock EE, Alhadrami HA, Paton GI (2010) Application of microbial bioreporters in environmental microbiology and bioremediation. In: whole cell sensing systems II. Adv Biochem Eng Biotechnol 118:189–209

    CAS  Google Scholar 

  20. Moss B (1996) A land awash with nutrients—the problem of eutrophication. Chem Ind 11:407–411

    Google Scholar 

  21. Yeoman S, Stephenson T, Lester JN, Perry R (1988) The removal of phosphorus during waste-water treatment: a review. Environ Pollut 49(3):183–233

    Article  CAS  Google Scholar 

  22. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  Google Scholar 

  23. Ritchie RJ, Trautman DA, Larkum AWD (2001) Phosphate limited cultures of the cyanobacterium Synechococcus are capable of very rapid, opportunistic uptake of phosphate. New Phytol 152(2):189–201

    Article  CAS  Google Scholar 

  24. Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhart FC, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Scahechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM, Washington D.C, pp 1357–1381

    Google Scholar 

  25. Su Z, Olman V, Xu Y (2007) Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8:156–167

    Article  Google Scholar 

  26. Schreiter PP, Gillor O, Post A, Belkin S, Schmid RD, Bachmann TT (2001) Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter strain. Biosens Bioelectron 16(9–12):811–818

    Article  CAS  Google Scholar 

  27. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8(5):205–213, 227–253

    Article  CAS  Google Scholar 

  28. Luo M, Guo YC, Deng JY, Wei HP, Zhang ZP, Leng Y, Men D, Song LR, Zhang XE, Zhou YF (2010) Characterization of a monomeric heat-labile classical alkaline phosphatase from Anabaena sp. PCC7120. Biochemistry (Mosc) 75(5):655–664

    Article  CAS  Google Scholar 

  29. Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica lemm. Plant Physiol 30(4):366–372

    Article  CAS  Google Scholar 

  30. Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179(6):1998–2005

    CAS  Google Scholar 

  31. Lazaro S, Fernandez-Pinas F, Fernandez-Valiente E, Blanco-Rivero A, Leganes F (2001) pbpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol 183(2):628–636

    Article  CAS  Google Scholar 

  32. Fernandez-Pinas F, Wolk CP (1994) Expression of luxCD-E in Anabaena sp. can replace the use of exogenous aldehyde for in vivo localization of transcription by luxAB. Gene 150(1):169–174

    Article  CAS  Google Scholar 

  33. Marker AFH (1972) The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biol 2:361–385

    Article  Google Scholar 

  34. Leganes F, Sanchez-Maeso E, Fernandez-Valiente E (1987) Effect of indoleacetic acid on growth and dinitrogen fixation in cyanobacteria. Plant Cell Physiol 28(3):529–533

    CAS  Google Scholar 

  35. Douterelo I, Perona E, Mateo P (2004) Use of cyanobacteria to assess water quality in running waters. Environ Pollut 127(3):377–384

    Article  CAS  Google Scholar 

  36. Eisenreich SJ, Banneman RT, Amstrong DE (1975) A simplified phosphorus analytical technique. Environ Lett 9:45–53

    Article  Google Scholar 

  37. Ray JM, Bhaya D, Block MA, Grossman AR (1991) Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol 173(14):4297–4309

    CAS  Google Scholar 

  38. Kelly MG, Whitton BA (1998) Biological monitoring of eutrophication in rivers. Hydrobiologia 348:55–67

    Article  Google Scholar 

  39. Adams MM, Gomez-Garcia MR, Grossman AR, Bhaya D (2008) Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats. J Bacteriol 190(24):8171–8184

    Article  CAS  Google Scholar 

  40. Orchard ED, Webb EA, Dyhrman ST (2009) Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ Microbiol 11(9):2400–2411

    Article  CAS  Google Scholar 

  41. Wilhelm SW, DeBruyn JM, Gillor O, Twiss MR, Livingston K, Bourbonniere RA, Pickell LD, Trick CG, Dean AL, McKay RM (2003) Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie. Aquat Microb Ecol 32:275–285

    Article  Google Scholar 

  42. Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 34:1–67

    Article  CAS  Google Scholar 

  43. Rodea-Palomares I, Fernández-Piñas F, González-García C, Leganés F (2009) Use of lux-marked cyanobacterial bioreporters for assessment of individual and combined toxicities of metals in aqueous samples. In: Marle PM, Ga HJ (eds) Handbook on cyanobacteria: biochemistry, biotechnology and applications. Nova Science, New York, USA, pp 283–304

    Google Scholar 

  44. Rodea-Palomares I, Gonzalez-Garcia C, Leganes F, Fernandez-Piñas F (2009) Effect of pH, EDTA, and anions on heavy metal toxicity toward a bioluminescent cyanobacterial bioreporter. Arch Environ Contam Toxicol 57(3):477–487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Comunidad de Madrid grants S-0505/AMB/0321 and S-2009/AMB/1511 (Microambiente-CM) and by the Spanish Ministry of Science and Innovation [grant CGL2010-15675, sub-programme BOS] and [grant CGL2008-02397, sub-programme BOS]. M. Angeles Muñoz-Martín is recipient of a Post-doctoral contract from the Comunidad de Madrid. Water samples from La China STP were kindly supplied by the Confederación Hidrográfica del Tajo and those from the Guadalix River by Elvira Perona

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Fernández-Piñas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Martín, M.Á., Mateo, P., Leganés, F. et al. Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120. Anal Bioanal Chem 400, 3573–3584 (2011). https://doi.org/10.1007/s00216-011-5017-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5017-0

Keywords

Navigation