Skip to main content
Log in

Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 13 August 2010

Abstract

Probing the intracellular proteome of Thermotoga maritima and Caldicellulosiruptor saccharolyticus in pure and co-culture affords a global investigation into the machinery and mechanisms enduring inside the bacterial thermophilic cell at the time of harvest. The second of a two part study, employing GeLC-MS2 a variety of proteins were confidently identified with <1% false discovery rate, and spectral counts for label-free relative quantification afforded indication of the dynamic proteome as a function of environmental stimuli. Almost 25% of the T. maritima proteome and 10% of the C. saccharolyticus proteome were identified. Through comparison of growth temperatures for T. maritima, a protein associated with chemotaxis was uniquely present in the sample cultivated at the non-optimal growth temperature. It is suspected that movement was induced due to the non-optimal condition as the organism may need to migrate in the culture to locate more nutrients. The inventory of C. saccharolyticus proteins identified in these studies and attributed to spectral counting, demonstrated that two CRISPR-associated proteins had increased expression in the pure culture versus the co-culture. Further focusing on this relationship, a C. saccharolyticus phage-shock protein was identified in the co-culture expanding a scenario that the co-culture had decreased antiviral resistance and accordingly an infection-related protein was present. Alterations in growth conditions of these bacterial thermophilic microorganisms offer a glimpse into the intricacy of microbial behavior and interaction.

A summary comparing the number of confidently identified proteins from the cell lysis of the thermophilic bacteria T. maritima and C. saccharolyticus in mono- and co-culture. The expression profile of identified proteins provides insight into microbial interaction and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson MR, Montero CI, Conners SB, Shockley KR, Bridger SL, Kelly RM (2005) Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 55:664–674

    Article  CAS  Google Scholar 

  2. Yang YL, Xu YQ, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887

    Article  CAS  Google Scholar 

  3. Muhammad SA, Ahmad S, Hameed A (2009) Antibiotic production by thermophilic bacillus specie Sat-4. Pak J Pharm Sci 22:339–345

    CAS  Google Scholar 

  4. Esikova TZ, Temirov YV, Sokolov SL, Alakhov YB (2002) Secondary antimicrobial metabolites produced by thermophilic Bacillus spp. strains VK2 and VK21. Appl Biochem Microbiol 38:226–231

    Article  CAS  Google Scholar 

  5. Shank EA, Kolter R (2009) New developments in microbial interspecies signaling. Curr Opin Microbiol 12:205–214

    Article  CAS  Google Scholar 

  6. Vafiadi C, Topakas E, Biely P, Christakopoulos P (2009) Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett 296:178–184

    Article  CAS  Google Scholar 

  7. Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Medigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043

    Article  CAS  Google Scholar 

  8. Asada Y, Endo S, Inoue Y, Mamiya H, Hara A, Kunishima N, Matsunaga T (2009) Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8 A hyperthermostable aldose-1-dehydrogenase with broad substrate specificity. Chem Biol Interact 178:117–126

    Article  CAS  Google Scholar 

  9. Makarova KS, Wolf YI, Koonin EV (2009) Comprehensive comparative-genomic analysis of Type 2 toxin–antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4:19

    Article  Google Scholar 

  10. Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976

    Article  CAS  Google Scholar 

  11. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  Google Scholar 

  12. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp nov represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  13. Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:7540–7552

    Article  CAS  Google Scholar 

  14. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson LD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  Google Scholar 

  15. VanFossen AL, Lewis DL, Nichols JD, Kelly RM (2008) Polysaccharide degradation and synthesis by extremely nermophilic anaerobes. Ann NY Acad Sci 1125:322–337

    Article  CAS  Google Scholar 

  16. Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen-nov, sp-nov—an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266

    Article  CAS  Google Scholar 

  17. VanFossen AL, Verhaart MRA, Kengen SMW, Kelly RM (2009) Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microb 75:7718–7724

    Article  CAS  Google Scholar 

  18. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  19. Gao J, Friedrichs MS, Dongre AR, Opiteck GJ (2005) Guidelines for the routine application of the peptide hits technique. J Am Soc Mass Spectrom 16:1231–1238

    Article  CAS  Google Scholar 

  20. Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  21. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  Google Scholar 

  22. Zybailov B, Coleman MK, Florens L, Washburn MP (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77:6218–6224

    Article  CAS  Google Scholar 

  23. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5:2339–2347

    Article  CAS  Google Scholar 

  24. Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic Archaeon Pyrococcus futiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128

    Article  CAS  Google Scholar 

  25. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  26. Andrews GL, Shuford CM, Burnett JC, Hawkridge AM, Muddiman DC (2009) Coupling of a vented column with splitless nanoRPLC-ESI-MS for the improved separation and detection of brain natriuretic peptide-32 and its proteolytic peptides. J Chromatogr B 877:948–954

    Article  CAS  Google Scholar 

  27. Andrews GL, Lewis DL, Notey J, Kelly RM, Muddiman DC (2010) Characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2. J. Proteome Res. in press

  28. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  29. Weatherly DB, Atwood JA, Minning TA, Cavola C, Tarleton RL, Orlando R (2005) A heuristic method for assigning a false-discovery rate for protein identifications from mascot database search results. Mol Cell Proteomics 4:762–772

    Article  CAS  Google Scholar 

  30. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  CAS  Google Scholar 

  31. Pfeffer W (1884) Locomotorische Richtungsbewegungen durch chemische Reize. Unters Bot Inst Tub 1:95–24

    Google Scholar 

  32. Pfeffer W (1888) Uber chemotaktische Bewegungen von Bakterien, Flagellaten und Volvocineen. Unters Bot Inst Tub 2:582–663

    Google Scholar 

  33. Berg HC (1975) Chemotaxis in Bacteria. Annu Rev Biophys Bioeng 4:119–136

    Article  CAS  Google Scholar 

  34. Kolter R, Losick R (1998) Microbiology—one for all and all for one. Science 280:226–227

    Article  CAS  Google Scholar 

  35. Adams MWW (1990) The metabolism of hydrogen by extremely thermophilic sulfur-dependent bacteria. FEMS Microbiol Rev 75:219–237

    Article  CAS  Google Scholar 

  36. Muralidharan V, Rinker KD, Hirsh IS, Bouwer EJ, Kelly RM (1997) Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures. Biotechnol Bioeng 56:268–278

    Article  CAS  Google Scholar 

  37. Jansen R, van Embden J, Gasstra W, Schouls L (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  Google Scholar 

  38. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    Article  CAS  Google Scholar 

  39. Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. PNAS 87:862–866

    Article  CAS  Google Scholar 

  40. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of the National Institutes of Health (Grant 5T32GM00-8776-08), which supports GLA in the North Carolina State University Molecular Biotechnology Training Program, and the W. M. Keck Foundation. RMK acknowledges support from the US National Science Foundation (CBT0617272) and the Bioenergy Science Center (BESC), a U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research. DLL acknowledges support from a US Department of Education GAANN Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Muddiman.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-010-4050-8

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muddiman, D., Andrews, G., Lewis, D. et al. Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting. Anal Bioanal Chem 398, 391–404 (2010). https://doi.org/10.1007/s00216-010-3929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3929-8

Keywords

Navigation