Skip to main content
Log in

Direct optical detection in bioanalysis: an update

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In biomolecular interaction analysis, direct optical detection is attracting increasing interest in academia and industry. Therefore, a previous review has been updated. Optical principles are given in brief, focussing especially on modern and frequently used techniques. Commercialized methods are listed with some specific applications. In addition, some of the many applications found in the literature are listed; others which have been reviewed elsewhere are cited. Overall, the growing interest in direct optical monitoring of biomolecular interaction is demonstrated and future trends are outlined. Because optical methods is a very wide field, the paper concentrates on the currently most common methods, microrefractometry and microreflectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perkel JM (2009) Who needs labels? Macromolecular interaction sans labels. Science Sep 19:1561–1565

    Google Scholar 

  2. Gauglitz G (2005) Direct optical sensors: principles and selected applications. Anal Bioanal Chem 381(1):141–155

    Article  CAS  Google Scholar 

  3. Fan XD, White IM, Shopova SI, Zhu HY, Suter JD, Sun YZ (2009) Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta 620:8–26

    Article  Google Scholar 

  4. Marazela MD, Morreno-Bondi MC (2002) Anal Bioanal Chem 372:664

    Article  Google Scholar 

  5. Cooper MA (2002) Optical biosensors in drug discovery. Nature 1:515–527

    Article  CAS  Google Scholar 

  6. Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834–842

    Article  CAS  Google Scholar 

  7. Cooper MA (2006) Optical biosensors: where next and how soon? Drug Discovery Today 11:1061–1067

    Article  CAS  Google Scholar 

  8. Gauglitz G, Proll G (2008) Strategies for label-free optical detection. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, 109 (biosensing for the 21st century). Springer-Verlag, Berlin, pp 395–432

    Google Scholar 

  9. Seidel M, Niessner R (2008) Automated analytical microarrays: a critical review. Anal Bioanal Chem 391:1521–1544

    Article  CAS  Google Scholar 

  10. Bally M, Halter M, Vörös J, Grandin HM (2006) Optical microarray biosensing techniques. Surf Interface Anal 38:1442–1458

    Article  CAS  Google Scholar 

  11. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6

    Article  CAS  Google Scholar 

  12. Yu XB, Xu DK, Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6:5493–5503

    Article  CAS  Google Scholar 

  13. Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37:2512–2529

    Article  CAS  Google Scholar 

  14. Fechner P, Proell F, Carlquist M, Proll G (2009) An advanced biosensor for the prediction of estrogenic effects of endocrine-disrupting chemicals on the estrogen receptor alpha. Anal Bioanal Chem 393:1579–1585

    Article  CAS  Google Scholar 

  15. http://www.biacore.com/lifesciences/products/systems_overview/index.html

  16. Löfås S (2007) Biacore – Creating the Business of Label-Free Protein-Interaction Analysis. In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of Biosensors and Biochips. John Wiley & Sons, pp 1261–1271

  17. Liedberg B, Nylander C, Lundström I (1993) Sens Actuators 4:299

    Google Scholar 

  18. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators B: Chemical 54(1–2):3–15

    Article  Google Scholar 

  19. Cooper MA (2006) Non-optical screening platforms: the next wave in label-free screening? Drug Discovery Today 11(23/24):1068–1074

    Article  CAS  Google Scholar 

  20. Ng LM, Simmons R (1999) Anal Chem 71:343R

    Article  CAS  Google Scholar 

  21. Huleihel M, Pavlov V, Erukhimovitch V (2009) The use of FTIR microscopy for the evaluation of anti-bacterial agents activity. Journal of Photochemistry and Photobiology B: Biology 96:17–23

    Article  CAS  Google Scholar 

  22. Goormaghtigh E, Gasper R, Benard A, Goldsztein A, Raussens V (2009) Protein secondary structure content in solution, films and tissues: Redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim Biophys Acta, Proteins and Proteomic 1794:1332–1343

    Article  CAS  Google Scholar 

  23. Krafft C, Roesch P, Popp J (2009) Raman spectroscopy in medicine. In: Bohr HC (ed) Handbook of molecular biophysics, XXXVIII–XXXIX. Wiley–VCH Verlag, Weinheim

    Google Scholar 

  24. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chemical Society Reviews 37:1001–1011

    Article  CAS  Google Scholar 

  25. Kitagawa J, Ohkubo T, Onuma M, Kadoya Y (2006) THz spectroscopic characterization of biomolecule/water systems by compact sensor chips. Applied Physics Letters 89:041114/1–041114/3

    Article  CAS  Google Scholar 

  26. Zubritsky E (1999) Anal Chem 71:545A

    CAS  Google Scholar 

  27. Fritz J (2008) Cantilever biosensors. Analyst 133:855–863

    Article  CAS  Google Scholar 

  28. Bhargava R (2007) Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389:1155–1169

    Article  CAS  Google Scholar 

  29. Kröger K, Bauer J, Fleckenstein B, Rademann J, Jung G, Gauglitz G (2002) Epitope-mapping of transglutaminase with parallel label-free optical detection. Biosens Bioelectron 17:937–944

    Article  Google Scholar 

  30. Mehlmann M, Garvin AM, Steinwand M, Gauglitz G (2005) Reflectometric interference spectroscopy combined with MALDI–TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives. Anal Bioanal Chem 382:1942–1948

    Article  CAS  Google Scholar 

  31. Schwarz B, Proll G, Gauglitz G (2010) Label-free point of care assay for infectious agents such as the H1N1 virus. Book of Abstracts Europt(r)ode X Prag, March 28–31, p213

  32. Nolan TG, Weimer WA, Burgi DS, Dovichi NJ (1984) Laser induced phothermal refraction. In Proceedings of the International Conference on Lasers, pp. 430–432

  33. Seidel BS, Faubel W (1997) Miniaturized photothermal sensor as analytical tools for detection of very small volumes in chemical process control. Optical Engineering 36:46–472

    Google Scholar 

  34. Hecht E (2001) Optics, 4th edn. Addison Wesley, London

    Google Scholar 

  35. Albers WM et al (2003) Bioanalysis. In: Gauglitz G, Vo-Dinh T (eds) Handbook of spectroscopy, vol. 2. Wiley–VCH, Weinheim

    Google Scholar 

  36. Gauglitz G (1996) In: Baltes H, Göpel W, Hesse J (eds) Sensors update, vol 1. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  37. Narayanaswamy R, Wolfbeis OS (2004) Optical sensors. In: Wolfbeis OS (ed) Springer series on chemical sensors and biosensors, vol. 1. Springer Heidelberg

  38. Orellana G, Moreno-Bondi MC (2005) Frontiers in chemical sensors. In: Wolfbeis OS (ed) Springer series on chemical sensors and biosensors, vol. 3. Springer, Heidelberg

    Google Scholar 

  39. Homola J, Yee SS, Myszka D (2008) Surface plasmon resonance biosensors. In: Ligler FS, Taitt CR (eds) Optical biosensors, 2nd edn. Elsevier B.V, Amsterdam

    Google Scholar 

  40. Schasfoort RBM, McWhirter A (2008) SPR instrumentation. In: Schasfoort RBM, Tudos AJ (eds) Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge, pp 35–80

    Chapter  Google Scholar 

  41. Fattinger C, Mangold C, Gale MT, Schuetz H (1995) Opt Eng (Bellingham, Wash) 34:2744–2753

    Article  CAS  Google Scholar 

  42. Vörös J, Ramsden JJ, Csucs G, Szendrõ I, De Paul SM, Textor M, Spencer ND (2002) Optical grating coupler biosensors. Biomaterials 23:3699–3710

    Article  Google Scholar 

  43. Cush R, Cronin JM, Stewart WJ (1993) Biosens Bioelectron 8:347

    Article  CAS  Google Scholar 

  44. De Tommasi E, De Stefano L, Rea I, Di Sarno V, Rotiroti L, Arcari P, Lamberti A, Sanges C, Rendina I (2008) Porous silicon based resonant mirrors for biochemical sensing. Sensors 8:6549–6556

    Article  Google Scholar 

  45. Ingenhoff J, Drapp B, Gauglitz G (1993) Biosensors using integrated optical devices. Fresenius J Anal Chem 346:580–583

    Article  CAS  Google Scholar 

  46. Sepúlveda B, Armelles G, Lechuga LM (2007) Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors. Sensor Actuator A 134:339–347

    Article  Google Scholar 

  47. Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn R, Heideman RG (2005) Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. Biosens Bioelectron 20:1417–1421

    Article  CAS  Google Scholar 

  48. Maguis S, Laffont G, Ferdinand P, Carbonnier B, Kham K, Mekhalif T, Millot MC (2008) Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing. Optics Express 16(23):19049–19062

    Article  CAS  Google Scholar 

  49. Gauglitz G, Nahm W (1991) Fresenius J Anal Chem 341:279

    Article  CAS  Google Scholar 

  50. Rothmund M, Brecht A, Berthel G, Gräfe D, Schütz A, Gauglitz G (1997) Label free binding assay with spectroscopic detection for pharmaceutical screening. Fresenius J Anal Chem 359:15–22

    Article  CAS  Google Scholar 

  51. Reichl D, Krage R, Krummel C, Gauglitz G (2000) Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup. Appl Spectrosc 54:583–586

    Article  CAS  Google Scholar 

  52. Pröll F, Markovic G, Schweizer N, Gauglitz G (2008) Imaging reflectometric interference spectroscopy (iRIfS): a versatile tool for high throughput biomolecular interaction analysis. In: Proceedings of The Tenth World Congress on Biosensors, Shanghai, China

  53. Nikitin PI (2007) Picoscopes, new label-free biosensors. In Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of biosensors and biochips. John Wiley & Sons, Ltd

  54. http://www.bioportfolio.com/biocorporate/223-Affinity%2BSensors.html

  55. http://www.srubiosystems.com

  56. Cunningham BT, Chan L, Mathias PC, Ganesh N, George S, Lidstone E, Heeres J, Hergenrother PJ (2009) Photonic crystals: A platform for label-free and enhanced fluorescence biomolecular and cellular assays. Mater Res Soc Symp Proc 1133

  57. Lukosz W, Tiefenthaler K (1983) Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Optics letters 8(10):537–539

    Article  CAS  Google Scholar 

  58. Tiefenthaler K, Lukosz W (1986) Optical sensor for selectively detecting substances and for detection of the variation of refractive index in substances. PCT Int Appl, p52. WO 8607149 A1 19861204

  59. Kunz RE (1991) Proc SPIE-Int Soc Opt Eng 1587:98

    Google Scholar 

  60. Kunz RE, Edlinger J, Curtis BJ, Gale MT, Kempen LU, Rudigier H, Schuetz H (1994) Proc SPIE-Int Soc Opt Eng 2068:313–325

    CAS  Google Scholar 

  61. http://www.owls-sensors.com/OWLS-System.aspx

  62. http://www.owls-sensors.com/technology-overview.aspx

  63. http://www.corning.com/lifesciences/us_canada/en/whats_new/epic_system /epic_products.aspx

  64. Schröder R, Merten N, Mosolff Mathiesen J, Martini L, Kruljac-Letunic A, Krop F, Blaukat A, Fang Y, Tran E, Ulven T, Drewke C, Whistler J, Pardo L, Gomeza J, Kostenis E (2009) The C-Terminal Tail of CRTH2 is a Key Molecular Determinant That constrains Gai and Downstream Signaling Cascade Activation. J Biol Chem 284(2):1324–1336

    Article  Google Scholar 

  65. Fang Y, Frutos AG, Verklereen R (2008) Label-free cell-based assays for GPCR screening. Comb Chem High T Scr 11:357–369

    CAS  Google Scholar 

  66. Cunningham BT, Li P, Schulz S, Lin B, Baird C, Gerstenmaier J, Genick C, Wang F, Fine E, Laing L (2004) Label-free assays on the BIND system. J Biomol Screen 9:481–490

    Article  CAS  Google Scholar 

  67. Cunningham BT, Lin B, Qiu J, Li P, Pepper J, Hugh B (2002) A plastic colorimetric optical biosensor for multiparallel detection of label-free biochemical interactions. Sensor Actuator B 85:219–226

    Article  Google Scholar 

  68. Li MZ, He F, Liao Q, Liu J, Xu L, Jiang L, Song YL, Wang S, Zhu DB (2008) Ultrasensitive DNA detection using photonic crystals. Angew Chem 120:7368–7372

    Article  Google Scholar 

  69. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  70. Schasfoort RBM, Schuck P (2008) Future trends in SPR technology. In: Schasfoort RBM, Tudos AJ (eds) Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge, pp 354–394

    Chapter  Google Scholar 

  71. BiaCore homepage: System-Selection-Guide_FINAL_screen.pdf

  72. http://www.biacore.com/lifesciences/products/systems_overview/index.html

  73. http://www.biacore.com/lifesciences/Application_Support/publications/refdb/index.html

  74. http://www.ibis-spr.nl/

  75. Kooyman RPH, Lenferink ATM et al (1991) Anal Chem 63:83

    Article  CAS  Google Scholar 

  76. Lokate AMC, Beusink JB, Besselink GAJ, Pruijn GJM, Schasfoort RBM (2007) Biomolecular Interaction Monitoring of Autoantibodies by Scanning Surface Plasmon Resonance Microarray Imaging. J Am Chem Soc 129:14013–14018

    Article  CAS  Google Scholar 

  77. http://www.sensata.com/sensors/spreeta-analytical-sensor-highlights.htm

  78. Elkind JL, Stimpson DI, Strong AA et al (1999) Sens. Actuators B54:182

    Article  CAS  Google Scholar 

  79. Sesay M, Cullen DC (2001) Environ Monitoring Assess 70:83

    Article  CAS  Google Scholar 

  80. http://reichertspr.com/

  81. http://www.reichertspr.com/PDF/App_Note-2-Small-Molecule.pdf

  82. http://www.biosensingusa.com

  83. http://www.biosensingusa.com/downloads/BI-3000sheet.pdf

  84. http://www.micro-systems.de/index.htm

  85. http://www.biosuplar.com/

  86. Zayats M, Raitman OA, Chegel VI, Kharitonov AB, Willner I (2002) Probing antigen-antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors. Anal Chem 74:4763–4773

    Article  CAS  Google Scholar 

  87. http://www.genoptics-spr.com

  88. http://www.horiba.com/de/scientific/products/surface-plasmon-resonance-imaging-spri/

  89. http://www.ecochemie.nl/?pag=8

  90. http://www.ecochemie.nl/download/content/Appl010.pdf

  91. http://www.xantec.com/new/index.php

  92. http://www.xantec.com/new/index.php?content=11&sub=12&haupt=12

  93. http://www.gwcinstruments.com/

  94. http://www.gwctechnologies.com/gwcApplications.htm

  95. http://www.sierrasensors.com/

  96. http://www.dkktoa.net/productslpi4.html

  97. http://www.ksvltd.com/content/ksvspr200/

  98. http://www.ksvltd.com/content/AN_111_SPR200_PEMcharacterization.pdf

  99. http://www.nanofilm.de

  100. Valiokas R, Klenkar G, Tinazli A, Tamp R, Liedberg B, Piehler J (2006) Differential protein assembly on micropatterned surfaces with tailored molecular and surface multivalency. Chem Bio Chem 7:1325–1329

    CAS  Google Scholar 

  101. Azzam RMA, Bashara NM (1989) Ellipsometry and polarised light. North Holland, Amsterdam

    Google Scholar 

  102. Brecht A, Gauglitz G, Striebel C (1994) Characterization of biomembranes by spectral ellipsometry. Biosens Bioelectron 9:139–146

    Article  Google Scholar 

  103. http://www.mavenbiotech.com/about.asp

  104. http://www.mavenbiotech.com/reversephase.pdf

  105. http://www.fortebio.com/

  106. http://www.fortebio.com/references.html

  107. http://www.biametrics.com/

  108. http://www.farfield-group.com/index.asp

  109. http://www.farfield-group.com/products.asp

  110. Wang J, Xu X, Zhang Z, Yang F, Yang X (2009) Real-time study of genomic DNA structural changes upon interaction with small molecules using dual polarization interferometry. Anal Chem 81:4914–4921

    Article  CAS  Google Scholar 

  111. Boussaad S, Pean J, Tao NJ (2000) Anal Chem 72:222

    Article  CAS  Google Scholar 

  112. Bergwerff AA, Van Knapen F (2006) Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J AOAC Int 98:826–831

    Google Scholar 

  113. McWhirter A, Wahlström L (2008) The Benefits and Scope of Surface Plasmon Resonance-based Biosensors in Food Analysis. In: Schasfoort RBM, Tudos AJ (eds) Handbook of Surface Plasmon Resonance. The Royal Society of Chemistry

  114. Campbell CT, Kim G (2007) SPR microscopy and its application to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392

    Article  CAS  Google Scholar 

  115. Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7:1630–1642

    Article  CAS  Google Scholar 

  116. Wang Y, Zhu X, Wu M, Xia N, Wang J, Zhou F (2009) Simultaneous and label-free determination of wild-type and mutant p53 at a single SPR chip preimmobilized with consensus DNA and monocolonal antibody. Anal Chem 81:8441–8446

    Article  CAS  Google Scholar 

  117. Nguyen B, Tanious FA, Wilson WD (2007) Biosensor-surface Plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions. Methods 42:150–161

    Google Scholar 

  118. Nemova G, Kashyap R (2007) Novel fiber Bragg grating assisted Plasmon-polariton for bio-medical refractive-index sensors. J Mater Sci: Mater Electron 18:327–330

    Article  Google Scholar 

  119. de Tommasi E, De Stefano L, Rea I, Di Sarno V, Rotiroti L, Arcari P, Lamberti A, Sanges C, Rendina I (2008) Porous silicon based resonant mirrors for biochemical sensing. Sensors 8:6549–6556

    Article  Google Scholar 

  120. Hong JG, Choi JS, Han GY, Kang JK, Kim CM, Kim TS, Yoon DS (2006) A Mach–Zehnder interferometer based on silicon oxides for Biosensor applications. Anal Chim Acta 573–574:97–103

    Article  Google Scholar 

  121. Sepúlveda B, Sánchez del Río J, Moreno M, Blanco FJ, Mayora K, Domínguez C, Lechuga LM (2006) Optical biosensor Microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. J Opt A: Pure Appl Opt 8:561–566

    Article  Google Scholar 

  122. Sepúlveda B, Armelles G, Lechuga LM (2007) Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors. Sensor Actuator A-Phys 134:339–347

    Article  Google Scholar 

  123. Lambeck PV, van Lith J, Hoekstra HJWM (2006) Three novel integrated optical sensing structures for the chemical domain. Sensor Actuator B-Chem 113:718–729

    Article  Google Scholar 

  124. Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn R, Heideman RG (2005) Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. Biosens Bioelectron 20:1417–1421

    Article  CAS  Google Scholar 

  125. Piehler J, Brecht A, Gauglitz G, Maul C, Zerlin M, Thiericke R, Grabley S (1997) Label-free monitoring of DNA-ligand interactions. Anal Biochem 249:94–102

    Article  CAS  Google Scholar 

  126. Lamken P, Lata S, Gavutis M, Piehler J (2004) Ligand-induced assembling of the type I interferon receptor on supported lipid bilayers. J Mol Biol 341:303–18

    Article  CAS  Google Scholar 

  127. Lue XY, Huang Y, Qian WP, Tang ZM, Lu ZH (2003) An effective method for quantitative evaluation of proteins adsorbed on biomaterial surfaces. J Biomed Mater Res Part A 66:722–727

    Article  Google Scholar 

  128. Jenison R, Yang S, Haeberli A, Polisky B (2001) Interference-based detection of nucleic acid targets on optically coated silicon. Nat Biotechnol 19:62–65

    Article  CAS  Google Scholar 

  129. Lu JH, Strohsahl CM, Miller BL, Rothberg LJ (2004) Reflectric interferometric detection of label-free oligonucleotides. Anal Chem 76:4416–4420

    Article  CAS  Google Scholar 

  130. Lee JC, An JY, Kim BW (2007) Application of anodized aluminium oxide as a biochip substrate for a Fabry–Perot interferometer. J Chem Technol Biotechnol 82:1045–1052

    Article  CAS  Google Scholar 

  131. Gesellchen F, Zimmermann B, Herberg FW (2005) Direct optical detection of protein–ligand interactions. In: Nienhaus GU (ed) Protein–Ligand interactions: methods and applications. In: Methods in molecular biology 305. Humana Press Inc, Totowa

    Google Scholar 

  132. Shang Y, Zhao W, Xu E, Erchao T, Tong C, Wu J (2010) FTRIFS biosensor based on double layer porous silicon as a LC detector for target molecule screening from complex samples. Biosens Bioelectron 25:1056–1063

    Article  CAS  Google Scholar 

  133. Proll G, Kumpf M, Mehlmann M, Tschmelak J, Griffith H, Abuknesha R, Gauglitz G (2004) Monitoring an antibody affinity chromatography with a label-free optical biosensor technique. J Immunol Methods 292:35–42

    Article  CAS  Google Scholar 

  134. Moehrle B, Kumpf M, Gauglitz G (2005) Determination of affinity constants of locked nucleic acid (LNA) and DNA duplex formation using label free sensor technology. Analyst 130:1634–1638

    Article  CAS  Google Scholar 

  135. Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Mäkelä S, Pongratz I (2007) Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148:4875–4886

    Article  CAS  Google Scholar 

  136. Möhrle BP, Köhler K, Jaehrling J, Brock R, Gauglitz G (2006) Label-free characterisation of cell adhesion using reflectometric interference spectroscopy (RIfS). Anal Bioanal Chem 384:407–413

    Article  Google Scholar 

  137. Roth G, Freund S, Moehrle B, Woellner K, Bruenjes J, Gauglitz G, Wiesmueller KH, Jung G (2007) Ubiquitin binds to a short peptide segment of hydrolase UCH-L3: a study by FCS, RlfS, ITC and NMR. Chem Bio Chem 8:323–331

    CAS  Google Scholar 

  138. Mehlmann M, Garvin AM, Steinwand M, Gauglitz G (2005) Reflectometric interference spectroscopy combined with MALDI-TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives. Anal Bioanal Chem 382:1942–1948

    Article  CAS  Google Scholar 

  139. Kumpf M, Gauglitz G (2006) Biomolecular interaction analysis under electrophoretic flow conditions. Anal Bioanal Chem 384:1129–1133

    Article  CAS  Google Scholar 

  140. Zimmermann R, Osaki T, Kratzmueller T, Gauglitz G, Dukhin SS, Werner C (2006) Electrostatic Switching of Biopolymer Layers. Insights from Combined Electrokinetics and Reflectometric Interference. Anal Chem 78:5851–5857

    Article  CAS  Google Scholar 

  141. Osaki T, Renner L, Herklotz M, Werner C (2006) Hydrophobic and electrostatic interactions in the adsorption of fibronectin at maleic acid copolymer films. J Phys Chem B 110:12119–12124

    Article  CAS  Google Scholar 

  142. Liu C, Zhang D, Zhang H (2008) Study of in-situ measurement system for porous alumina film based on AFM and reflectometric interference spectroscopy. Guangpuxue Yu Guangpu Fenxi 28:1679–1683

    CAS  Google Scholar 

  143. Leopold N, Busche S, Gauglitz G et al (2009) IR absorption and reflectometric interference spectroscopy (RIfS) combined to a new sensing approach for gas analytes absorbed into thin polymer films. Spectrochim Acta A 72:994–999

    Article  Google Scholar 

  144. Proll G, Steinle L, Pröll F, Kumpf M, Möhrle B, Mehlmann M, Gauglitz G (2007) The potential of label-free detection in high-content-screening applications. J Chromatogr A 1161:2–8

    Article  CAS  Google Scholar 

  145. Pröll F, Fechner P, Proll G (2009) Direct optical detection in fragment-based screening. Anal Bioanal Chem 393:1557–1562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Gauglitz.

Additional information

Published in the special issue on Focus on Bioanalysis with Guest Editors Antje J. Baeumner, Günter Gauglitz and Frieder W. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauglitz, G. Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 398, 2363–2372 (2010). https://doi.org/10.1007/s00216-010-3904-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3904-4

Keywords

Navigation