Skip to main content
Log in

RNA aptamer-based optical nanostructured sensor for highly sensitive and label-free detection of antigen–antibody reactions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Developments of optical protein sensors with nanostructure based on the noble metals have currently received great attention for their high efficiency and simultaneous analysis of various important biomolecules from proteomics to genetics. In this study, we exploited the absorbance spectra of gold-capped nanoparticles substrate for label-free detections of antigen–antibody reactions using a specific thiolated RNA aptamer. These synthesized RNA aptamers have been optimized to bind to the Fc portion of the human IgG1 subclass, due to their ability to orient antibodies direction on the gold surface. After attaching the anti-fibrinogen antibodies on the surface via these linkers, our thiolated RNA aptamer-based nanostructured sensors were easily applicable to specific detections of fibrinogen with a limit of detection of 0.1 ng/mL. These nanostructured sensor-based models will open a way to display numerous immunosensors as well as to develop other functionally similar sensors which could then be expanded into multi-arrays assay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tuan VD (2006) Nanotechnology in biology and medicine: methods, devices, and applications. CRC, New York

    Google Scholar 

  2. Yong BS, Jeong ML, Mi RP, Min GK, Bong HC, Hyeon BP, Sunglyul M (2007) Analysis of recombinant protein expression using localized surface plasmon resonance (LSPR). Biosens Bioelectron 22:2301–2307

    Article  Google Scholar 

  3. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2383

    Article  CAS  Google Scholar 

  4. Lee S, Mayer KM, Hafner JH (2009) An improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 81:4450–4455

    Article  CAS  Google Scholar 

  5. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41:1049–1057

    Article  CAS  Google Scholar 

  6. Ha MH, Endo T, Kim DK, Tamiya E (2007) Nanostructure and molecular interface for biosensing devices. Proc SPIE 6768:I1–I11

    Google Scholar 

  7. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  8. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271

    Article  CAS  Google Scholar 

  9. Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV (2004) Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 108:13066–13068

    Article  CAS  Google Scholar 

  10. Ha MH, Yoshikawa H, Saito M, Tamiya E (2009) An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers. ACS Nano 3:446–452

    Article  Google Scholar 

  11. Wu LY, Ross BM, Lee LP (2009) Optical properties of the crescent-shaped nanohole antenna. Nano Lett 9:1956–1961

    Article  CAS  Google Scholar 

  12. Zhang JZ, Noguez C (2008) Optical properties and applications of metal nanostructures. Plasmonics 3:127–150

    Article  CAS  Google Scholar 

  13. Okamoto T, Yamaguchi I (2000) Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett 25:372–374

    Article  CAS  Google Scholar 

  14. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509

    Article  CAS  Google Scholar 

  15. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378

    Article  CAS  Google Scholar 

  16. Fujiwara K, Watarai H, Itoh H, Nakahama E, Ogawa N (2006) Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal Bioanal Chem 386:639–644

    Article  CAS  Google Scholar 

  17. Ha HM, Nakayama T, Saito M, Yamamura S, Takamura Y, Tamiya E (2008) A microfluidic chip based on localized surface plasmon resonance for real-time monitoring of antigen–antibody reactions. Jpn J Appl Phys 47:1337–1341

    Article  Google Scholar 

  18. Ha HM, Endo T, Kerman K, Chikae M, Kim DK, Yamamura S, Takamura Y, Tamiya E (2007) A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Tech Adv Mater 8:331–338

    Article  Google Scholar 

  19. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77:6976–6984

    Article  CAS  Google Scholar 

  20. Ha MH, Endo T, Saito M, Chikae M, Kim DK, Yamamura S, Takamura Y, Tamiya E (2008) Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. Anal Chem 80:1859–1864

    Article  Google Scholar 

  21. Endo T, Yamamura S, Kerman K, Tamiya E (2008) Label-free cell-based assay using localized surface plasmon resonance biosensor. Anal Chim Acta 614:182–189

    Article  CAS  Google Scholar 

  22. Endo T, Kerman K, Nagatani N, Ha MH, Kim DK, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78:6465–6475

    Article  CAS  Google Scholar 

  23. Miyakawa S, Nomura Y, Sakamoto T, Yamaguchi Y, Kato K, Yamazaki S, Nakamura Y (2008) Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G. RNA 14:1154–1163

    Article  CAS  Google Scholar 

  24. Prasad PN (2003) Introduction to biophotonics. Wiley-Interscience, New York

    Book  Google Scholar 

  25. Fang W, Chih MH (2009) Aptamer-based electrochemical biosensor for Botulinum neurotoxin. Anal Bioanal Chem 393:1943–1948

    Article  Google Scholar 

  26. Endo T, Yamamura S, Nagatani N, Morita Y, Takamura Y, Tamiya E (2005) Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction. Sci Tech Adv Mater 6:491–500

    Article  CAS  Google Scholar 

  27. Joseph AP, Dalia LC, Zhi Z, Ye X, Weihong T (2008) Applications of aptamers in cancer cell biology. Anal Chim Acta 621:101–108

    Article  Google Scholar 

  28. Yoshihito Y, Katsunori H, Nobuya S, Hiromi M, Makio F, Iwao W (2009) Antibody-specific aptamer-based PCR analysis for sensitive protein detection. Anal Bioanal Chem 395:1089–1096

    Article  Google Scholar 

  29. Chunyan D, Jinhua C, Lihua N, Zhou N, Shouzhuo Y (2009) Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Anal Chem 81:9972–9978

    Article  Google Scholar 

  30. Teresa M, Veli CO, Pablo LS, Monica M, Ioanis K, Ciara KO (2007) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390:989–1007

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Kagan Kerman from Department of Chemistry, Toronto University, Canada and Dr. Tatsuro Endo from Tokyo Institute of Technology, Japan for valuable advice and editing assistance during the preparations of our manuscript. H. M. Hiep expresses thanks for a postdoctoral fellowship from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tamiya.

Electronic Supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiep, H.M., Saito, M., Nakamura, Y. et al. RNA aptamer-based optical nanostructured sensor for highly sensitive and label-free detection of antigen–antibody reactions. Anal Bioanal Chem 396, 2575–2581 (2010). https://doi.org/10.1007/s00216-010-3488-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3488-z

Keywords

Navigation