Skip to main content
Log in

Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Five double-target multiplex plasmids to be used as calibrants for GMO quantification were constructed. They were composed of two modified targets associated in tandem in the same plasmid : (1) a part of the soybean lectin gene and (2) a part of the transgenic construction of the GTS40-3-2 event. Modifications were performed in such a way that each target could be amplified with the same primers as those for the original target from which they were derived but such that each was specifically detected with an appropriate probe. Sequence modifications were done to keep the parameters of the new target as similar as possible to those of its original sequence. The plasmids were designed to be used either in separate reactions or in multiplex reactions. Evidence is given that with each of the five different plasmids used in separate wells as a calibrant for a different copy number, a calibration curve can be built. When the targets were amplified together (in multiplex) and at different concentrations inside the same well, the calibration curves showed that there was a competition effect between the targets and this limits the range of copy numbers for calibration over a maximum of 2 orders of magnitude. Another possible application of multiplex plasmids is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Permingeat HR, Reggiardo MI, Vallejos RH (2002) J Agric Food Chem 50:4431–4436

    Article  CAS  Google Scholar 

  2. James D, Schmidt AM, Wall E, Green M, Masri S (2003) J Agric Food Chem 51:5829–5834

    Article  CAS  Google Scholar 

  3. Singh CK, Ojha A, Kachru DN (2007) J AOAC Int 90:1517–1525

    CAS  Google Scholar 

  4. Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) Shokuhin Eiseigaku Zasshi 42:24–32

    Article  CAS  Google Scholar 

  5. García-Cañas V, González R, Cifuentes A (2004) Electrophoresis 25:2219–2226

    Article  Google Scholar 

  6. Germini A, Zanetti A, Salati C, Rossi S, Forre C, Schmid S, Marchelli R, Fogher C (2004) J Agric Food Chem 52:3275–3280

    Article  CAS  Google Scholar 

  7. Shrestha HK, Hwu KK, Wang SJ, Liu LF, Chang MC (2008) J Agric Food Chem 56:8962–8968

    Article  CAS  Google Scholar 

  8. Hernandez M, Esteve T, Pla M (2005) J Agric Food Chem 53:7003–7009

    Article  CAS  Google Scholar 

  9. Heide BR, Heir E, Holck A (2008) Eur Food Res Technol 227:527–535

    Article  CAS  Google Scholar 

  10. Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721

    Article  CAS  Google Scholar 

  11. Hamels S, Glouden T, Gillard K, Mazzara M, Debode F, Foti N, Sneyers M, Teresa E, Pla M, Berben G, Moens W, Bertheau Y, Audeon C, van Den Eede G, Remacle J (2009) Eur Food Res Technol 228:1438–2377

    Article  Google Scholar 

  12. Xu J, Zhu SF, Miao HZ, Huang WS, Qiu MY, Huang Y, Fu XP, Li Y (2007) J Agric Food Chem 55:5575–5579

    Article  CAS  Google Scholar 

  13. Nadal A, Coll A, La Paz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888

    Article  CAS  Google Scholar 

  14. Hernandez M, Rodriguez-Lazaro D, Esteve T, Prat S, Pla M (2003) Anal Biochem 323:164–170

    Article  CAS  Google Scholar 

  15. Huang P, Pan TZ (2004) J Agric Food Chem 52:3264–3268

    Article  CAS  Google Scholar 

  16. Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139

    Article  CAS  Google Scholar 

  17. Rudi K, Rud I, Holck A (2003) Nucleic Acids Res 31(11):e62

    Article  Google Scholar 

  18. Foti N, Onori R, Donnarumma E, De Santis B, Miraglia M (2006) Eur Food Res Technol 222:209–216

    Article  CAS  Google Scholar 

  19. Weighardt F, Barbati C, Paoletti C, Querci M, Kay S, De Beuckeleer M, Van den Eede G (2004) J AOAC Int 87:1342–1355

    CAS  Google Scholar 

  20. Trapmann S, Catalani P, Conneely P, Corbisier P, Gancberg D, Hannes E, Guern L, Kramer GN (2002) The certification of reference materials of dry-mixed soya powder with different mass fractions of Roundup Ready soya. Certified reference materials IRMM-410-S. European Commission, DG-JRC, IRMM. http://irmm.jrc.be/rm/cert-reports/IRMM-410s_report.pdf

  21. European Commission (2004) Recommendation 2004/787/EC. Off J Eur Union L 348:18–24

    Google Scholar 

  22. Charels D, Broeders S, Corbisier P, Trapmann S, Schimmels H, Linsinger T, Emons H (2007) J Agric Food Chem 55:3258–3267

    Article  CAS  Google Scholar 

  23. Charels D, Broeders S, Corbisier P, Trapmann S, Schimmels H, Linsinger T, Emons H (2007) J Agric Food Chem 55:3268–3274

    Article  CAS  Google Scholar 

  24. Burns M, Corbisier P, Wiseman G, Valdivia H, McDonald P, Bowler P, Ohara K, Schimmel H, Charels D, Damant A, Harris N (2006) Eur Food Res Technol 224:249–258

    Article  CAS  Google Scholar 

  25. Taverniers I, Van Bockstaele E, De Loose M (2004) Anal Bioanal Chem 378:1198–1207

    Article  CAS  Google Scholar 

  26. Block A, Schwarz (2003) Eur Food Res Technol 216:421–427

    CAS  Google Scholar 

  27. Mattarucchi E, Weighardt F, Barbati C, Querci M, Van den Eede G (2005) Eur Food Res Technol 221:511–519

    Article  CAS  Google Scholar 

  28. Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) J AOAC Int 85:1119–1126

    CAS  Google Scholar 

  29. Yang L, Pan A, Zhang K, Yin C, Qian B, Chen J, Huang C, Zhang D (2005) Transgenic Res 14:817–831

    Article  CAS  Google Scholar 

  30. Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyoda M, Hino A (2002) J AOAC Int 85:1077–1089

    CAS  Google Scholar 

  31. Yang L, Guo J, Pan A, Zhang H, Zhang K, Wang Z, Zhang D (2007) J Agric Food Chem 55:15–24

    Article  Google Scholar 

  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Association Française de Normalisation (2005) ISO 21570. Foodstuffs - methods of analysis for the detection of genetically modified organisms and derived products - quantitative nucleic acid based methods. Association Française de Normalisation, Paris

    Google Scholar 

  34. Querci M, Kleter G, Malingreau JP, Broll H, Van den Eede G (2008) Scientific and technical contribution to the development of an overall health strategy in the area of GMOs. JRC-IHCP reference reports. Report EUR 23542 EN. http://ec.europa.eu/dgs/jrc/downloads/jrc_reference_report_2008_11_healthstrategy_gmos.pdf

  35. Love JL, Scholes P, Gilpin B, Savill M, Lin S, Samuel L (2006) J Microbiol Method 67:349–356

    Article  CAS  Google Scholar 

  36. European Network of GMO Laboratories (2008) Definition of minimum performance requirements for analytical methods of GMO testing. EU DG-JRC ENGL method performance requirements. EU DG-JRC, Ispra. http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm

  37. Huang C-C, Pan T-Z (2005) J Agric Food Chem 53:3833–3839

    Article  CAS  Google Scholar 

  38. Rønning SB, Vaitilingom M, Berdal KG, Holst-Jensen A (2003) Eur Food Res Technol 216:347–354

    Google Scholar 

Download references

Acknowledgements

This research was done within a Belgian research project (S-6140) financed by DG4 and DG6 of the former Belgian Federal Ministry of Agriculture. We are grateful to Aurélie Hosselet (HECE Fleurus) for her technical help and Nicole Wellens (Isogen Life Sciences, De Meern, the Netherlands) for advice with pyrosequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Berben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debode, F., Marien, A., Janssen, E. et al. Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects. Anal Bioanal Chem 396, 2151–2164 (2010). https://doi.org/10.1007/s00216-009-3396-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3396-2

Keywords

Navigation