Skip to main content
Log in

Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple layer-by-layer method to coat the bacterial cells with gold and silver nanoparticles (AuNPs and AgNPs) for the acquisition of surface-enhanced Raman scattering (SERS) spectra is reported. First, the bacteria cell wall is coated with poly (allylamine hydrochloride) (PAH), a positively charged polymer, and then with citrate reduced Au or AgNPs. In order to increase the stability of the coating, another layer of PAH is prepared on the surface. The SEM and AFM images indicate that the nanoparticles are in the form of both isolated and aggregated nanoparticles on the bacterial wall. The coating of bacterial cells with AgNPs or AuNPs not only serves for their preparation for SERS measurement but also helps to visualize the coated of bacterial cells under the ordinary white-light microscope objective due to efficient light-scattering properties of Au and AgNPs. A comparative study single versus aggregates of bacterial cells is also demonstrated for possible single bacterial detection with SERS. The two bacteria that differ in shape and cell wall biochemical structure, Escherichia coli and Staphylococcus cohnii, Gram-negative and -positive, respectively, are used as models. The preliminary results reveal that the approach could be used for single bacterial cell identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kneipp K, Kneipp H, Kneipp J (2006) Acc Chem Res 39:443–450

    Article  CAS  Google Scholar 

  2. Tang HW, Yang XB, Kirkham J, Smith DA (2007) Anal Chem 79:3646–3653

    Article  CAS  Google Scholar 

  3. Yang THW, XB KJ, Smith DA (2008) Appl Spectrosc 62:1060–1069

    Article  Google Scholar 

  4. Kneipp J, Kneipp H, Rajadurai A, Redmond RW, Kneipp K (2009) J Raman Spectrosc 40:1–5

    Article  CAS  Google Scholar 

  5. Culha M, Adigüzel A, Yazici MM, Kahraman M, Sahin F, Güllüce M (2008) Appl Spectrosc 62:1226–1232

    Article  CAS  Google Scholar 

  6. Guicheteau J, Argue L, Emge D, Hyre A, Jacobson M, Christesen S (2008) Appl Spectrosc 62:267–272

    Article  CAS  Google Scholar 

  7. Goeller LJ, Riley MR (2007) Appl Spectrosc 61:679–685

    Article  CAS  Google Scholar 

  8. Kahraman M, Yazici MM, Sahin F, Culha M (2007) J Biomed Opt 12: Art. No: 054015

  9. Kahraman M, Yazici MM, Sahin F, Bayrak OF, Culha M (2007) Appl Spectrosc 61:479–485

    Article  CAS  Google Scholar 

  10. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD (2005) J Phys Chem B 109:312–320

    Article  CAS  Google Scholar 

  11. Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Appl Spectrosc 59:1222–1228

    Article  CAS  Google Scholar 

  12. Kahraman M, Yazici MM, Sahin F, Culha M (2008) Langmuir 24:894–901

    Article  CAS  Google Scholar 

  13. Kahraman M, Yazici MM, Sahin F, Bayrak OF, Topcu E, Culha M (2007) Inter J Environment Anal Chem 87:763–770

    Article  CAS  Google Scholar 

  14. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  15. Caruso F, Spasova M, Susha A, Giersig M, Caruso RA (2001) Chem Mater 13:109–116

    Article  CAS  Google Scholar 

  16. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Angew Chem Int Ed 37:2202–2205

    Article  CAS  Google Scholar 

  17. Park MK, Deng S, Advincula RC (2005) Langmuir 21:5272–5277

    Article  CAS  Google Scholar 

  18. Gao C, Donath E, Mohwald H, Shen J (2002) Angew Chem Int Ed 41:3789–3793

    Article  CAS  Google Scholar 

  19. Katagiri K, Caruso F (2004) Macromolecules 37:9947–9953

    Article  CAS  Google Scholar 

  20. Angelatos AS, Radt B, Caruso F (2005) J Phys Chem B 109:3071–3076

    Article  CAS  Google Scholar 

  21. Yap HP, Quinn JF, Ng SM, Cho J, Caruso F (2005) Langmuir 21:4328–4333

    Article  CAS  Google Scholar 

  22. Wang Y, Yu A, Caruso F (2005) Angew Chem Int Ed 44:2888–2892

    Article  CAS  Google Scholar 

  23. Caruso F, Trau D, Mohwald H, Renneberg R (2000) Langmuir 16:1485–1488

    Article  CAS  Google Scholar 

  24. Holt B, Lam R, Meldrum FC, Stoyanov SD, Paunov VN (2007) Soft Matter 3:188–190

    Article  CAS  Google Scholar 

  25. Chu LY, Yamaguchi T, Nakao S (2002) Adv Mater 14:386–389

    Article  CAS  Google Scholar 

  26. Bäumler H, Neu B, Voigt A, Mitlöhner R, Leporatti S, Gao CY, Donath E, Kiesewetter H, Möhwald H, Meiselman HJ (2001) Microencapsulation 18:385–395

    Article  Google Scholar 

  27. Diaspro A, Silvano D, Krol S, Cavalleri O, Gliozzi A (2002) Langmuir 18:5047–5050

    Article  CAS  Google Scholar 

  28. Krol S, Nolte M, Diaspro A, Mazza D, Magrassi R, Gliozzi A, Fery A (2005) Langmuir 21:705–709

    Article  CAS  Google Scholar 

  29. Fakhrullin RF, Zamaleeva AI, Morozov MV, Tazetdinova DI, Alimova FK, Hilmutdinov AK, Zhdanov RI, Kahraman M, Culha M (2009) Langmuir 25:4628–4634

    Article  CAS  Google Scholar 

  30. Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) J Am Chem Soc 127:17600–17601

    Article  CAS  Google Scholar 

  31. Wilson WW, Wade MM, Holman SC, Champlin FR (2001) J Microbiol Methods 43:153–164

    Article  CAS  Google Scholar 

  32. Lee PC, Meisel D (1982) J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  33. Handley DA (1989) In: Hayat MA (ed) In colloidal gold: principles, methods, and. applications. Academic, New York, p 13 1

    Google Scholar 

  34. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  35. El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:829–834

    Article  CAS  Google Scholar 

  36. Mathews CK, van Holde KE, Ahern KG (1999) Addison-Wesley, San Francisco, Chapter 9, p. 305

  37. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Appl Spectrosc 58:33–40

    Article  CAS  Google Scholar 

  38. Jarvis RM, Goodacre R (2004) Anal Chem 76:40–47

    Article  CAS  Google Scholar 

  39. Efrima S, Zeiri L (2009) J Raman Spectrosc 40:277–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support of Yeditepe University during the course of this study. The authors also thank to Prof. Dr. Fikrettin Şahin and Prof. Sesin Kocagöz for their generous donations of S. cohnii and E. coli, respectively. Mehmet Kahraman and Alsu I. Zamaleeva contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rawil F. Fakhrullin or Mustafa Culha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahraman, M., Zamaleeva, A.I., Fakhrullin, R.F. et al. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal Bioanal Chem 395, 2559–2567 (2009). https://doi.org/10.1007/s00216-009-3159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3159-0

Keywords

Navigation