Skip to main content
Log in

Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The toxicology of nanomaterials is a blooming field of study, yet it is difficult to keep pace with the innovations in new materials and material applications. Those applications are quickly being introduced in research, industrial, and consumer settings. Even though the cytotoxicity of many types of nanoparticles has been demonstrated, the behavior of those particles in a biological environment is not yet fully known. This work characterized the following over time: protein adsorption on silica particle surfaces, the internalization of particles in human lung carcinoma (A549) cells when coated with different specific proteins or no proteins at all, and the cellular loss of particles following the removal of extracellular particles. Proteins were shown to quickly saturate the particle surface, followed by a competitive process of particle agglomeration and protein adsorption. Uptake of particles peaked at 8–10 h, and it was determined that, in this system, the charge of the protein-coated particles changed the rate of uptake if the charge difference was great enough. Cells internalized particles lacking any adsorbed proteins with approximately 3 times the rate of protein-coated particles with the same charge. Although particles exited cells over time, the process was slower than uptake and did not near completion within 24 h. Finally, analysis at the single cell level afforded observations of particle agglomerates loosely associated with cell membranes when serum was present in the culture medium, but in the absence of serum, particles adhered to the dish floor and formed smaller agglomerates on cell surfaces. Although data trends were easily distinguished, all samples showed considerable variation from cell to cell.

Silica-capped fluorescent semiconductor nanoparticles as internalized by human lung epithelial cells and adsorbed to a glass substrate in protein-free culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giddings JC, Piovella F, Ricetti M, Jarvis A, Peake IR, Bloom AL (1980) Clin Lab Haematol 2:121–128

    CAS  Google Scholar 

  2. Matsuno K, Schaffner T, Gerber HA, Ruchti C, Hess MW, Cottier H (1983) J Reticuloendothel Soc 33:263–273

    CAS  Google Scholar 

  3. Warheit DB (2001) J Environ Pathol Toxicol Oncol 20:133–141

    Google Scholar 

  4. Warheit DB (2005) Lung Biol Health Dis 204:303–327

    CAS  Google Scholar 

  5. Sayes CM, Reed KL, Warheit DB (2007) Toxicol Sci 97:163–180

    Article  CAS  Google Scholar 

  6. Bosch A, Heinemann M, Hendrickx B, Maier M, Reteuan C, Bars R, Calow P, de Wolf W, Doe J, Douben P, Fluckiger A, Greim H, Hutchinson T, Money C, Owen D, Swaen G, van Ravenswaay B, Wieand HJ (2006) Synthetic amorphous silica. Degussa, Hanau, pp 1–231

    Google Scholar 

  7. Warheit DB, Webb TR, Reed KL (2006) Part Fibre Toxicol 3:3

    Article  CAS  Google Scholar 

  8. Burckhardt JJ (1979) Scand J Immunol 10:229–235

    Article  CAS  Google Scholar 

  9. O’Brien AD, Scher I, Formal SB (1979) Infect Immun 25:513–520

    Google Scholar 

  10. Gerlier D, Avice T, Dore JF (1979) Biomedicine 31:106–110

    CAS  Google Scholar 

  11. Lin W, Huang Y-w, Zhou X-D, Ma Y (2006) Toxicol Appl Pharmacol 217:252–259

    Google Scholar 

  12. Chang J-S, Chang KLB, Hwang D-F, Kong Z-L (2007) Environ Sci Technol 41:2064–2068

    Article  CAS  Google Scholar 

  13. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Lesniak A, Salvati A, Hanrahan JP, de Jong WH, Dziubaltowska E, Stepnik M, Rydzynski K, McKerr G, Lynch I, Dawson KA, Howard CV (2008) Nano Lett 8:3069–3074

    Article  CAS  Google Scholar 

  14. Lundqvist M, Sethson I, Jonsson B-H (2004) Langmuir 20:10639–10647

    Article  CAS  Google Scholar 

  15. Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Nano Lett 7:1991–1995

    Article  CAS  Google Scholar 

  16. Karlsson M, Carlsson U (2005) Biophys J 88:3536–3544

    Article  CAS  Google Scholar 

  17. Lynch I, Dawson KA (2008) Nano Today 3:40–47

    Article  CAS  Google Scholar 

  18. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Toxicol Sci 100:303–315

    Article  CAS  Google Scholar 

  19. Angelos S, Liong M, Choi E, Zink JI (2008) Chem Eng J 137:4–13

    Article  CAS  Google Scholar 

  20. Trewyn BG, Nieweg JA, Zhao Y, Lin VSY (2008) Chem Eng J 137:23–29

    Article  CAS  Google Scholar 

  21. Chung T-H, Wu S-H, Yao M, Lu C-W, Lin Y-S, Hung Y, Mou C-Y, Chen Y-C, Huang D-M (2007) Biomaterials 28:2959–2966

    Article  CAS  Google Scholar 

  22. Xing X-L, He X-X, Wang K-M, Peng J-F, Tan W-H (2006) Gaodeng Xuexiao Huaxue Xuebao 27:2076–2078

    CAS  Google Scholar 

  23. Sun W, Fang N, Trewyn BG, Tsunoda M, Slowing II, Lin VSY, Yeung ES (2008) Anal Bioanal Chem 391:2119–2125

    Article  CAS  Google Scholar 

  24. Wang Y, Tang Z, Correa-Duarte MA, Pastoriza-Santos I, Giersig M, Kotov NA, Liz-Marzan LM (2004) J Phys Chem B 108:15461–15469

    Article  CAS  Google Scholar 

  25. Xing X, He X, Peng J, Wang K, Tan W (2005) J Nanosci Nanotechnol 5:1688–1693

    Article  CAS  Google Scholar 

  26. Lu C-W, Hung Y, Hsiao J-K, Yao M, Chung T-H, Lin Y-S, Wu S-H, Hsu S-C, Liu H-M, Mou C-Y, Yang C-S, Huang D-M, Chen Y-C (2007) Nano Lett 7:149–154

    Article  CAS  Google Scholar 

  27. Kim S, Pudavar HE, Bonoiu A, Prasad PN (2007) Adv Mater 19:3791–3795

    Article  CAS  Google Scholar 

  28. He X, Liu F, Wang K, Ge J, Qin D, Gong P, Tan W (2006) Chin Sci Bull 51:1939–1946

    Article  CAS  Google Scholar 

  29. Jin Y, Kannan S, Wu M, Zhao JX (2007) Chem Res Toxicol 20:1126–1133

    Article  CAS  Google Scholar 

  30. Ma Y, Shortreed MR, Li H, Huang W, Yeung ES (2001) Electrophoresis 22:421–426

    Article  CAS  Google Scholar 

  31. Adams M, Lin W, Ma Y (2007) J Undergrad Chem Res 6:1.19–11.22

    CAS  Google Scholar 

  32. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  33. Hartree EF (1972) Anal Biochem 48:422–427

    Article  CAS  Google Scholar 

  34. Correa-Duarte MA, Giersig M, Liz-Marzan LM (1998) Chem Phys Lett 286:497–501

    Article  CAS  Google Scholar 

  35. Ung T, Liz-Marzan LM, Mulvaney P (1999) J Phys Chem B 103:6770–6773

    Article  CAS  Google Scholar 

  36. Liz-Marzan LM, Giersig M, Mulvaney P (1996) Langmuir 12:4329–4335

    Article  CAS  Google Scholar 

  37. Iler RK (1959) Particles coated with dense, hydrated, amorphous silica. US Patent 2(885):366

    Google Scholar 

  38. Yu WW, Qu L, Guo W, Peng X (2003) Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  39. Graf M, Garcia RG, Waetzig H (2005) Electrophoresis 26:2409–2417

    Article  CAS  Google Scholar 

  40. Ekuma CE, Ugwu EI, Idenyi NE (2006) J Appl Sci 6:1982–1985

    Article  CAS  Google Scholar 

  41. Gemeinhart RA, Luo D, Saltzman WM (2005) Biotechnol Prog 21:532–537

    Article  CAS  Google Scholar 

  42. Chen M, von Mikecz A (2005) Exp Cell Res 305:51–62

    Article  CAS  Google Scholar 

  43. Malamud D, Drysdale JW (1978) Anal Biochem 86:620–647

    Article  CAS  Google Scholar 

  44. Lin S-H, Hung C-L, Juang R-S (2008) Chem Eng J 145:211–217

    Article  CAS  Google Scholar 

  45. Park CS, Lee PH (1994) Yonsei Med J 35:355–377

    CAS  Google Scholar 

  46. Erickson B (2008) Chem Eng News 86:5

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge financial support from the Environmental Research Center and the Chemistry Department at Missouri University of Science and Technology. We would like to express our thanks to Honglan Shi for her help with the ICP-MS analysis, Demin Wang for his help with the zeta potential determination, and Xiaoliang Cheng for the translation of a literature article.

Conflict of interest statement

The authors declare that there are no conflicts of interest with any financial institutions or organizations regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfa Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stayton, I., Winiarz, J., Shannon, K. et al. Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal Bioanal Chem 394, 1595–1608 (2009). https://doi.org/10.1007/s00216-009-2839-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2839-0

Keywords

Navigation