Skip to main content
Log in

Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method for the identification of glutathione/electrophile adducts that are inhibiting glutathione-S-transferase (GST) activity was developed and applied for the analysis of the mycotoxin patulin. The method is based on high-performance liquid chromatography (HPLC) coupled to a continuous-flow enzyme reactor serving as biochemical detector (BCD) in parallel to electrospray mass spectrometric detection (ESI-MS). This HPLC-BCD technique combines a separation step and the detection of the inhibition and is therefore ideally suited for the analysis of the activity of single patulin/glutathione adducts within a complex mixture of adducts. Two out of at least 15 detected patulin–glutathione adducts showed strong GST inhibition. In ESI-MS, the inhibitory active adducts were characterized by [M + H]+ ions with m/z 462.1138 and m/z 741.2011, respectively. They could be identified as a dihydropyranone adduct containing one molecule glutathione and a ketohexanoic acid bearing two glutathione molecules.

Graphical Abstract

OnlineAbstractFigure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rychlik M, Schieberle P (1999) J Agric Food Chem 47:3749–3755

    Article  CAS  Google Scholar 

  2. Tangni EK, Theys R, Mignolet E, Maudoux M, Michelet JY, Larondelle Y (2003) Food Addit Contam 20:482–489

    Article  CAS  Google Scholar 

  3. Drusch S, Ragab W (2003) J Food Prot 66:1514–1527

    CAS  Google Scholar 

  4. WHO (1995) World Health Organ Tech Rep Ser 859:1–54

    Google Scholar 

  5. Alves I, Oliveira NG, Laires A, Rodrigues AS, Rueff J (2000) Mutagenesis 15:229–234

    Article  CAS  Google Scholar 

  6. McKinley ER, Carlton WW, Boon GD (1982) Food Chem Toxicol 20:289–300

    Article  CAS  Google Scholar 

  7. Mahfoud R, Maresca M, Garmy N, Fantini J (2002) Toxicol Appl Pharmacol 181:209–218

    Article  CAS  Google Scholar 

  8. Riley RT, Showker JL (1991) Toxicol Appl Pharmacol 109:108–126

    Article  CAS  Google Scholar 

  9. Thust R, Kneist S, Mendel J (1982) Mut Res Let 103:91–97

    Article  CAS  Google Scholar 

  10. Pfeiffer E, Gross K, Metzler M (1998) Carcinogenesis 19:1313–1318

    Article  CAS  Google Scholar 

  11. Liu B-H, Yu F-Y, Wu T-S, Li S-Y, Su M-C, Wang M-C, Shih S-M (2003) Toxicol Appl Pharmacol 191:255–263

    Article  CAS  Google Scholar 

  12. Schumacher D, Metzler M, Lehmann L (2005) Arch Toxicol 79:110–121

    Article  CAS  Google Scholar 

  13. Schumacher DM, Muller C, Metzler M, Lehmann L (2006) Toxicol Lett 166:268–275

    Article  CAS  Google Scholar 

  14. Dickens F, Jones HEH (1961) Brit J Cancer 15:85–100

    CAS  Google Scholar 

  15. Barhoumi R, Burghardt RC (1996) Fundam Appl Toxicol 30:290–297

    Article  CAS  Google Scholar 

  16. Pfeiffer E, Diwald TT, Metzler M (2005) Mol Nutr Food Res 49:329–336

    Article  CAS  Google Scholar 

  17. Luft P, Oostingh GJ, Gruijthuijsen Y, Horejs-Hoeck J, Lehmann I, Duschl A (2008) Environ Toxicol 23:84–95

    Article  CAS  Google Scholar 

  18. Rychlik M, Kircher F, Schusdziarra V, Lippl F (2004) Food Chem Toxicol 42:729–735

    Article  CAS  Google Scholar 

  19. Larsson P, Tjalve H (1992) Cancer Res 52:1267–1277

    CAS  Google Scholar 

  20. Lind RC, Gandolfi AJ, Hall PM (1992) Anesthesiology 77:721–727

    Article  CAS  Google Scholar 

  21. Fliege R, Metzler M (2000) Chem Res Toxicol 13:373–381

    Article  CAS  Google Scholar 

  22. Rychlik M (2005) Nutrition 29:61–68

    CAS  Google Scholar 

  23. Rychlik M (2003) Food Addit Contam 20:829–837

    Article  CAS  Google Scholar 

  24. Lindroth S, von Wright A (1990) J Environ Pathol Toxicol Oncol 10:254–259

    CAS  Google Scholar 

  25. Lindroth S, von Wright A (1978) Appl Environ Microbiol 35:1003–1007

    CAS  Google Scholar 

  26. van Bladeren PJ, van Ommen B (1991) Pharmacol Ther 51:35–46

    Article  Google Scholar 

  27. Schebb NH, Heus F, Saenger T, Karst U, Irth H, Kool J (2008) Anal Chem 80:6764–6772

    Article  CAS  Google Scholar 

  28. de Jong CF, Derks RJ, Bruyneel B, Niessen W, Irth H (2006) J Chromatogr A 1112:303–310

    Article  Google Scholar 

  29. van Elswijk DA, Diefenbach O, van der Berg S, Irth H, Tjaden UR, van der Greef J (2003) J Chromatogr A 1020:45–58

    Article  Google Scholar 

  30. Kool J, van Liempd SM, Ramautar R, Schenk T, Meerman JH, Irth H, Commandeur JN, Vermeulen NP (2005) J Biomol Screen 10:427–436

    Article  CAS  Google Scholar 

  31. Kool J, Eggink M, van Rossum H, van Liempd SM, van Elswijk DA, Irth H, Commandeur JN, Meerman JH, Vermeulen NP (2007) J Biomol Screen 12:396–405

    Article  CAS  Google Scholar 

  32. Lake BG (1987) In: Snell K, Mullock B (eds) Biochemical toxicology: a practical approach. IRL Press, Oxford, pp 183–215

    Google Scholar 

  33. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  34. Baillie TA, Davis MR (1993) Biol Mass Spectrom 22:319–325

    Article  CAS  Google Scholar 

  35. Wen B, Ma L, Nelson SD, Zhu M (2008) Anal Chem 80:1788–1799

    Article  CAS  Google Scholar 

  36. Haroldsen PE, Reilly MH, Hughes H, Gaskell SJ, Porter CJ (1988) Biomed Environ Mass Spectrom 15:615–621

    Article  CAS  Google Scholar 

  37. Maul R, Schebb NH, Kulling SE (2008) Anal Bioanal Chem 391:239–250

    Article  CAS  Google Scholar 

  38. van Elswijk DA, Irth H (2003) Phytochem Rev 1:427–439

    Article  Google Scholar 

  39. van Ommen B, Ploemen JH, Bogaards JJ, Monks TJ, Gau SS, van Bladeren PJ (1991) Biochem J 276(Pt 3):661–666

    Google Scholar 

  40. Fliege R, Metzler M (1999) Chemico-Biological Int 123:85–103

    Article  CAS  Google Scholar 

  41. Ashoor SH, Chu FS (1973) Food Cosmet Toxicol 11:995–1000

    CAS  Google Scholar 

  42. Ashoor SH, Chu FS (1973) Food Cosmet Toxicol 11:617–624

    Article  CAS  Google Scholar 

  43. Arafat W, Kern D, Dirheimer G (1985) Chem Biol Interact 56:333–349

    Article  CAS  Google Scholar 

  44. Askelof P, Guthenberg C, Jakobson I, Mannervik B (1975) Biochemical J 147:513–522

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Heinrich Luftmann (University of Münster, Germany) for helpful discussions. The “Studienstiftung des Deutschen Volkes” (Bonn, Germany) is gratefully acknowledged for financial support in form of a Ph.D. scholarship for Nils Helge Schebb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM I (PDF 71.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schebb, N.H., Faber, H., Maul, R. et al. Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal Bioanal Chem 394, 1361–1373 (2009). https://doi.org/10.1007/s00216-009-2765-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2765-1

Keywords

Navigation