Skip to main content

Advertisement

Log in

Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The O-linked β-N-acetylglucosamine (O-GlcNAc) modification is an abundant post-translational modification in eukaryotic cells. This dynamic glycosylation plays a fundamental role in the activity of many nuclear and cytoplasmic proteins and is associated with pathologies like type II diabetes, Alzheimer’s disease or some cancers. However the exact link between O-GlcNAc-modified proteins and their function in cells is largely undefined for most cases. Here we report a strategy based on the 1,3-dipolar cycloaddition, called click chemistry, between unnatural N-acetylglucosamine (GlcNAc) analogues (substituted with an azido or alkyne group) and the corresponding biotinylated probe to specifically detect, enrich and identify O-GlcNAc-modified proteins. This bio-orthogonal conjugation confirms that only azido analogue of GlcNAc is metabolized by the cell. Thanks to the biotin probe, affinity purification on streptavidin beads allowed us to identify 32 O-GlcNAc-azido-tagged proteins by LC-MS/MS analysis in an MCF-7 cellular model, 14 of which were previously unreported. This work illustrates the use of the click-chemistry-based strategy combined with a proteomic approach to get further insight into the pattern of O-GlcNAc-modified proteins and the biological significance of this post-translational modification.

Detection of biotinylated O-GlcNAz proteins in MCF-7 cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Torres CR, Hart GW (1984) J Biol Chem 259:3308–3317

    CAS  Google Scholar 

  2. Wells L, Vosseller K, Hart GW (2001) Science 291:2376–2378

    Article  CAS  Google Scholar 

  3. Iyer SP, Hart GW (2003) Biochemistry 42:2493–2499

    Article  CAS  Google Scholar 

  4. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) Proc Natl Acad Sci USA 101:10804–10809

    Article  CAS  Google Scholar 

  5. Konrad RJ, Kudlow JE (2002) Int J Mol Med 10:535–539

    CAS  Google Scholar 

  6. Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) Proc Natl Acad Sci USA 100:9116–9121

    Article  CAS  Google Scholar 

  7. Speers AE, Adam GC, Cravatt BF (2003) J Am Chem Soc 125:4686–4687

    Article  CAS  Google Scholar 

  8. Speers AE, Cravatt BF (2004) Chem Biol 11:535–546

    Article  CAS  Google Scholar 

  9. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed Engl 40:2004–2021

    Article  CAS  Google Scholar 

  10. Bock DV, Hiemstra H, van Maarseveen JH (2006) Eur J Org Chem 2006:51–68

    Article  Google Scholar 

  11. Kolb HC, Sharpless KB (2003) Drug Discov Today 8:1128–1137

    Article  CAS  Google Scholar 

  12. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed Engl 41:2596–2599

    Article  CAS  Google Scholar 

  13. Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) ASC Chem Biol 1:644–648

    Article  CAS  Google Scholar 

  14. Rybak JN, Scheurer SB, Neri D, Elia G (2004) Proteomics 4:2296–2299

    Article  CAS  Google Scholar 

  15. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) J Am Chem Soc 125:3192–3193

    Article  CAS  Google Scholar 

  16. Link AJ, Tirrell DA (2003) J Am Chem Soc 125:11164–11165

    Article  CAS  Google Scholar 

  17. Gupta SS, Kuzelka J, Singh P, Lewis WG, Manchester M, Finn MG (2005) Bioconjugate Chem 16:1572–1579

    Article  Google Scholar 

  18. Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR, Zhao Y (2005) J Proteome Res 4:950–957

    Article  CAS  Google Scholar 

  19. Sawa M, Hsu TL, Itoh T, Sujiyama M, Hanson SR, Vogt PK, Wong CH (2006) Proc Natl Acad Sci USA 103:12371–12376

    Article  CAS  Google Scholar 

  20. Perreira M, Kim EJ, Thomas CJ, Hanover JA (2006) Bioorg Med Chem 14:837–846

    Article  CAS  Google Scholar 

  21. Jitrapakdee S, Wallace JC (1999) Biochem J 340:1–16

    Article  CAS  Google Scholar 

  22. Smith S, Witkowski A, Joshi AK (2003) Prog Lipid Res 42:289–317

    Article  CAS  Google Scholar 

  23. Nandi A, Sprung R, Barma DK, Zhao Y, Kim SC, Falck JR, Zhao Y (2006) Anal Chem 78:452–458

    Article  CAS  Google Scholar 

  24. Ku NO, Omary MB (1995) J Biol Chem 270:11820–11827

    Article  CAS  Google Scholar 

  25. Walgren JL, Vincent LS, Schey KL, Buse MG (2003) Am J Physiol Endocrinol Metab 284:E424–E434

    CAS  Google Scholar 

  26. Wells L, Vosseler K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mol Cell Proteomics 1:791–804

    Article  CAS  Google Scholar 

  27. Zachara NE, Hart GW (2004) Biochim Biophys Acta 1673:13–28

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sébastien Vidal, Philippe Belmont and Tony Lefebvre for helpful discussions, to Peter Goekjian for critical reading of the manuscript and to Adeline Page for nano-HPLC-MS/MS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Lemoine.

Additional information

Caroline Gurcel and Anne-Sophie Vercoutter-Edouart contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(PDF 96.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurcel, C., Vercoutter-Edouart, AS., Fonbonne, C. et al. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Anal Bioanal Chem 390, 2089–2097 (2008). https://doi.org/10.1007/s00216-008-1950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1950-y

Keywords

Navigation