Skip to main content
Log in

Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The efficiencies of conventional extraction techniques and analytical methods (HPLC–DAD and ELISA) were investigated for analyses of microcystins (MCs) in sediments. Our results showed several limitations. First, the extraction efficiency strongly depends on the extraction solvent, and extraction with 5% acetic acid in 0.2% trifluoroacetic acid (TFA)–methanol was confirmed as being the most appropriate for three different sediments (recovery: 33.1–44.9% of total MCs according to HPLC analyses). Second, the recovery of MCs was affected by the type of sediment but did not clearly correlate with the content of organic carbon. These results suggest that the sorption of MCs onto inorganic materials such as clay minerals is probably a more important process than interactions of the MCs with organic sediment matter. Third, the structure of the MCs is another crucial factor that affects the sorption of MCs and their recovery from sediments. Hydrophilic MC-RR gave much lower recoveries (20.0–38.8%) than MC-YR (44.1–59.5%) or MC-LR (55.3–77.8%) from three different types of spiked sediments. Recovery results analysed with HPLC–DAD correlated well with ELISA analyses. Further, extraction with 5% acetic acid in 0.2% TFA–methanol was used for analyses of MCs in 34 natural sediment samples collected from Brno reservoir (Czech Republic) from April to October 2005. Concentrations of MCs in sediments ranged from 0.003 to 0.380 μg/g sediment d.m. (ELISA results) or 0.016–0.474 μg/g d.m. (HPLC results). These values are equivalent to 0.63–96.47 μg/L of sediment (ELISA) or 4.67–108.68 μg/L (HPLC), respectively. Concentrations of sediment MCs showed both temporal and spatial variability, with the highest MC contents observed in the spring (April and May) and the lowest concentrations in July and August. Our results demonstrate the suitability of the methods described here for studying the occurrence, fate and ecological role of MCs in the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4

Similar content being viewed by others

References

  1. Svrcek C, Smith DW (2004) J Environ Eng Sci 3:155–185

    Article  CAS  Google Scholar 

  2. de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ (2004) Ecotox Environ Safe 59:151–163

    Article  CAS  Google Scholar 

  3. Duy TN, Lam PKS, Shaw GR, Connell DW (2000) Rev Environ Contam Toxicol 163:113–186

    CAS  Google Scholar 

  4. Codd GA, Morrison LF, Metcalf JS (2005) Toxicol Appl Pharmacol 203:264–272

    Article  CAS  Google Scholar 

  5. Dietrich D, Hoeger S (2005) Toxicol Appl Pharmacol 203:273–289

    Article  CAS  Google Scholar 

  6. WHO (1998) Guidelines for drinking water quality. World Health Organisation, Geneva

    Google Scholar 

  7. Kaebernick M, Neilan BA (2001) FEMS Microbiol Ecol 35:1–9

    Article  CAS  Google Scholar 

  8. Perez S, Aga DS (2005) Trends Anal Chem 24:658–670

    Google Scholar 

  9. Pietsch J, Bornmann K, Schmidt W (2002) Acta Hydrochim Hydrobiol 30:7–15

    Article  CAS  Google Scholar 

  10. Zheng L, Xie P, Li YL, Yang H, Wang SB, Guo NC (2004) Bull Environ Contam Toxicol 73:698–706

    Article  CAS  Google Scholar 

  11. Pearson LA, Hisbergues M, Borner T, Dittmann E, Neilan BA (2004) Appl Environ Microbiol 70:6370–6378

    Article  CAS  Google Scholar 

  12. Rapala J, Lahti K, Sivonen K, Niemela SI (1994) Lett Appl Microbiol 19:423–428

    CAS  Google Scholar 

  13. Jones G, Bourne DG, Blakeley RL, Doelle H (1994) Nat Toxins 2:228–235

    Google Scholar 

  14. Cousins IT, Bealing DJ, James HA, Sutton A (1996) Water Res 30:481–485

    Article  CAS  Google Scholar 

  15. Christoffersen K, Lyck S, Winding A (2002) Aquat Microb Ecol 27:125–136

    Google Scholar 

  16. Hyenstrand P, Rohrlack T, Beattie KA, Metcalf JS, Codd GA, Christoffersen K (2003) Water Res 37:3299–3306

    Article  CAS  Google Scholar 

  17. Saito T, Sugiura N, Itayama T, Inamori Y, Matsumura M (2003) Environ Technol 24:143–151

    Article  CAS  Google Scholar 

  18. Holst T, Jorgensen NO, Jorgensen C, Johansen A (2003) Water Res 37:4748–4760

    Article  CAS  Google Scholar 

  19. Babica P, Blaha L, Marsalek B (2005) Environ Sci Pollut Res 12:369–374

    Article  CAS  Google Scholar 

  20. Welker M, Steinberg C (1999) Water Res 33:1159–1164

    Article  CAS  Google Scholar 

  21. Welker M, Steinberg C (2000) Env Sci Technol 34:3415–3419

    Article  CAS  Google Scholar 

  22. Mazur H, Plinski M (2001) Oceanologia 43:329–339

    Google Scholar 

  23. Miller MJ, Critchley MM, Hutson J, Fallowfield HJ (2001) Water Res 35:1461–1468

    Article  CAS  Google Scholar 

  24. Saitou T, Sugiura N, Itayama T, Inamori Y, Matsumura M (2003) J Water Supply Res Technol–Aqua 52:13–18

    Google Scholar 

  25. Ishii H, Nishijima M, Abe T (2004) Water Res 38:2667–2676

    Article  CAS  Google Scholar 

  26. Imanishi S, Kato H, Mizuno M, Tsuji K, Harada K (2005) Chem Res Toxicol 18:591–598

    Article  CAS  Google Scholar 

  27. Jones GJ, Orr PT (1994) Water Res 28:871–876

    Article  CAS  Google Scholar 

  28. Ihle T, Jähnichen S, Benndorf J (2005) J Phycol 41:479–488

    Article  Google Scholar 

  29. Dittmann E, Erhard M, Kaebernick M, Scheler C, Neilan BA, von Dohren H, Borner T (2001) Microbiol–SGM 147:3113–3119

    Google Scholar 

  30. Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, de Marsac NT, Dittmann E (2006) Mol Microbiol 59:893–906

    Article  CAS  Google Scholar 

  31. Kankaanpaa HT, Sipia VO, Kuparinen JS, Ott JL, Carmichael WW (2001) Phycologia 40:268–274

    Article  Google Scholar 

  32. Kankaanpaa HT, Holliday J, Schroder H, Goddard TJ, von Fister R, Carmichael WW (2005) Toxicol Appl Pharm 203:243–256

    Article  CAS  Google Scholar 

  33. Tsuji K, Masui H, Uemura H, Mori Y, Harada K (2001) Toxicon 39:687–692

    Article  CAS  Google Scholar 

  34. Grover R (eds) (1988) Environmental chemistry of herbicides. CRC Press, Boca Raton, FL

  35. Zeck A, Weller MG, Bursill D, Niessner R (2001) Analyst 126:2000–2007

    Article  CAS  Google Scholar 

  36. Zeck A, Eikenberg A, Weller MG, Niessner R (2001) Anal Chim Acta 441:1–13

    Article  CAS  Google Scholar 

  37. De Maagd PGJ, Hendriks AJ, Seinen W, Sijm D (1999) Water Res 33:677–680

    Article  Google Scholar 

  38. Barco M, Lawton LA, Rivera J, Caixach J (2005) J Chromatogr A 1074:23–30

    Article  CAS  Google Scholar 

  39. Oliveira ACR, Magalhaes VF, Soares RM, Azevedo S (2005) Environ Toxicol 20:126–130

    Article  CAS  Google Scholar 

  40. Morris RJ, Williams DE, Luu HA, Holmes CFB, Andersen RJ, Calvert SE (2000) Toxicon 38:303–308

    Article  CAS  Google Scholar 

  41. Miller MJ, Fallowfield HJ (2001) Water Sci Technol 43:229–232

    CAS  Google Scholar 

  42. Rivasseau C, Martins S, Hennion MC (1998) J Chromatogr A 799:155–169

    Article  CAS  Google Scholar 

  43. Tsujimura S, Tsukada H, Nakahara H, Nakajima T, Nishino M (2000) Hydrobiologia 434:183–192

    Article  Google Scholar 

Download references

Acknowledgements

Research has been supported by the Grant Agency of the Czech Republic (206/03/1215), by project AVOZ60050516 granted to the Institute of Botany, and by the Ministry of Education of the C.R. (1M6798593901). We thank Lenka Šejnohová, M.Sc., Hana Slováčková, M.Sc. and Mrs. Martina Sadílková for their invaluable help with sediment sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Babica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babica, P., Kohoutek, J., Bláha, L. et al. Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal Bioanal Chem 385, 1545–1551 (2006). https://doi.org/10.1007/s00216-006-0545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0545-8

Keywords

Navigation