Skip to main content
Log in

On the thermodynamic stability of the intermolecular association between Lewis acids and Lewis bases: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The intermolecular association of twelve combinations of six different Lewis acids and Lewis bases (i.e., R 3 ABR3 where A = B and Al; B = N and P; R = H, F, and C6F5; R′ = H, CH3, and C(CH3)3) was theoretically described by means of DFT calculations using the dispersion-corrected ωB97x-D and B97D functionals in conjunction with the 6-311++G(2d,2p) basis set including toluene as solvent through the PCM-SMD implicit solvent scheme. All the studied Lewis pairs appeared to be stable on the basis of computed BSSE-corrected interaction energies; however, the free energies of formation computed in solution (ΔG solv) indicate that three Lewis acid–base combinations can be considered frustrated Lewis pairs (FLPs). Besides, the four features that characterize FLPs are: (1) large distances between the acid and base centers, (2) negligible changes in the geometry of the acid, (3) weak interaction energies, and (4) non-covalent dispersion energy contributing to almost the entire interaction energy. In the present work, we introduce two ad hoc indexes intended to quantify separately the electronic and steric factors, which have a direct effect in the intermolecular association of Lewis acids and Lewis bases and can be used to distinguished FLPs from classical Lewis adducts. Based on the aforementioned ad hoc indexes, the existence of a new kind of complexes that are “intermediate” between classical complexes and FLPs is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lewis GN (1923) Valence and the structure of atoms and molecules. Chemical Catalogue Company, New York

    Google Scholar 

  2. Brown HC, Schlesinger HI, Cardon SZ (1942) Studies in stereochemistry. I. Steric strains as a factor in the relative stability of some coördination compounds of boron. J Am Chem Soc 64:325–329

    Article  CAS  Google Scholar 

  3. Brown HC, Kanner B (1966) Preparation and reactions of 2,6-Di-t-butylpyridine and related hindered bases. A case of steric hindrance toward the proton. J Am Chem Soc 88:986–992

    Article  CAS  Google Scholar 

  4. Wittig G, Benz E (1959) Über das Verhalten von Dehydrobenzol gegenüber nucleophilen und elektrophilen Reagenzien. Chem Ber 92:1999–2013

    Article  CAS  Google Scholar 

  5. Tochtermann W (1966) Structures and reactions of organic ate-complexes. Angew Chem Int Ed Engl 5:351–371

    Article  CAS  Google Scholar 

  6. Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126

    Article  CAS  Google Scholar 

  7. Welch GC, Stephan DW (2007) Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 129:1880–1881

    Article  CAS  Google Scholar 

  8. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  9. Stephan DW (2015) Frustrated Lewis pairs: from concept to catalysis. Acc Chem Res 48:306–316

    Article  CAS  Google Scholar 

  10. Stephan DW, Erker G (2014) Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides. Chem Sci 5:2625–2641

    Article  CAS  Google Scholar 

  11. Stephan DW, Erker G (2015) Frustrated Lewis pair chemistry: development and perspectives. Angew Chem Int Ed 54:6400–6441

    Article  CAS  Google Scholar 

  12. Rokob TA, Hamza A, Stirling A, Soos T, Papai I (2008) Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. Angew Chem Int Ed 47:2435–2438

    Article  CAS  Google Scholar 

  13. Rokob TA, Hamza A, Papai I (2009) Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid–base properties. J Am Chem Soc 131:10701–11710

    Article  CAS  Google Scholar 

  14. Hanza A, Stirling A, Rokob TA, Papai I (2009) Mechanism of hydrogen activation by frustrated Lewis pairs: a molecular orbital approach. Int J Quantum Chem 109:2416–2425

    Article  Google Scholar 

  15. Momming CM, Fromel S, Kehr G, Frohlich R, Grimme S, Erker G (2009) Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. J Am Chem Soc 131:12280–12289

    Article  Google Scholar 

  16. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Ang Chem Int Ed 49:1402–1405

    Article  CAS  Google Scholar 

  17. Schimmer B, Grimme S (2010) Electric field induced activation of H2-can DFT do the job? Chem Commun 46:7942–7944

    Article  Google Scholar 

  18. Rokob TA, Bako I, Stirling A, Hamza A, Papai I (2013) Reactivity models of hydrogen activation by frustrated Lewis pairs: synergistic electron transfers or polarization by electric field? J Am Chem Soc 135:4425–4437

    Article  CAS  Google Scholar 

  19. Zeonjuk LL, Vankova N, Mavrandonakis A, Heine T, Roschenthaler GV, Eicher J (2013) On the mechanism of hydrogen activation by frustrated Lewis pairs. Chem Eur J 19:17413–17424

    Article  CAS  Google Scholar 

  20. Skara G, Pinter B, Top J, Geerlings P, De Proft F, De Vleeschouwer F (2015) Conceptual quantum chemical analysis of bonding and noncovalent interactions in the formation of frustrated Lewis pairs. Chem Eur J 21:1–11

    Article  Google Scholar 

  21. Bannwarth C, Hansen A, Grimme S (2015) The association of two “frustrated” Lewis pairs by state-of-the-art quantum chemical methods. Isr J Chem 55:235–242

    Article  CAS  Google Scholar 

  22. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. I. The transition state method. Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  23. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theor Comp 5:962–975

    Article  CAS  Google Scholar 

  24. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin, KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford, CT

  26. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Article  Google Scholar 

  27. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  28. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  29. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  30. McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  31. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  32. Schelegel HB (1987) Optimization of equilibrium geometries and transition structures. Adv Chem Phys 67:249–286

    Google Scholar 

  33. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  35. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Article  Google Scholar 

  36. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  37. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  38. Biegler-Koning FW, Bader RFW, Tang TH (1982) Calculation of the average properties of atoms in molecules. II. J Comp Chem 3:317–328

    Article  Google Scholar 

  39. Available from http://www.chemistry.mcmaster.ca/aimpac

  40. Liu S (2007) Steric effects: a quantitative description from density functional theory. J Chem Phys 126:244103

    Article  Google Scholar 

  41. Rong C, Lu T, Liu S (2014) Dissecting molecular descriptors into atomic contributions in density functional reactivity theory. J Chem Phys 140:024109

    Article  Google Scholar 

  42. Fang D, Piquelman JP, Liu S, Cisneros GA (2014) DFT-steric-based energy decomposition analysis of intermolecular interactions. Theor Chem Acc 133:1484

    Article  Google Scholar 

  43. Rincon L, Almeida R (2012) Is the Hammett’s constant free of steric effects? J Phys Chem A 116:7323–7530

    Article  Google Scholar 

  44. Haaland A (1989) Covalent versus dative bonds to main group metals, a useful distinction. Angew Chem Int Ed Eng 28:992–1007

    Article  Google Scholar 

  45. Gilbert TM (2004) Tests of the MP2 model and various DFT models in predicting the structures and B–N bond dissociation energies of amine-boranes (X3C)mH3−mB–N(CH3)nH3−n (X = H, F; m = 0–3; n = 0,3): Poor performance of the B3LYP approach for dative B–N bonds. J Phys Chem A 108:2550–2554

    Article  CAS  Google Scholar 

  46. Wagner JP, Schreiner PR (2015) London dispersion in molecular chemistry-reconsidering steric effects. Angew Chem Int Ed Eng 54:12274–12296

    Article  CAS  Google Scholar 

  47. Kocman M, Jurecka P, Dubecky M, Otyepka M, Cho Y, Kim KS (2015) Choosing a density functional for modeling adsorptive hydrogen storage: reference quantum mechanical calculations and a comparison of dispersion-corrected density functionals. Phys Chem Chem Phys 17:6423–6432

    Article  CAS  Google Scholar 

  48. Changrakumar KRS, Pal S (2002) A systematic study on the reactivity of Lewis acid–base complexes through the local hard-soft acid–base principle. J Phys Chem A 106:11775–11781

    Article  Google Scholar 

  49. Pinter B, Fievez T, Bickelhaupt FM, Geerlings P, De Proft F (2012) On the origin of the steric effect. Phys Chem Chem Phys 14:9846–9854

    Article  CAS  Google Scholar 

  50. Slater JC (1965) Quantum theory of molecules and solids. McGraw-Hill, New York

    Google Scholar 

  51. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been performed by employing the resources of the USFQ’s High Performance Computing system (HPC-USFQ). The authors would like to thank USFQ’s chancellor and collaboration grants program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rincón.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra, M., Real-Enriquez, M., Espinosa-Gavilanes, C. et al. On the thermodynamic stability of the intermolecular association between Lewis acids and Lewis bases: a DFT study. Theor Chem Acc 135, 77 (2016). https://doi.org/10.1007/s00214-016-1829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1829-5

Keywords

Navigation