Skip to main content
Log in

An efficient implementation of a QM–MM method in SIESTA

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present the major features of a new implementation of a QM–MM method that uses the DFT code Siesta to treat the quantum mechanical subsystem and the AMBER force field to deal with the classical part. The computation of the electrostatic interaction has been completely revamped to treat periodic boundary conditions exactly, using a real-space grid that encompasses the whole system. Additionally, we present a new parallelization of the Siesta grid operations that provides near-perfect load balancing for all the relevant operations and achieves a much better scalability, which is important for efficient massive QM–MM calculations in which the grid can potentially be very large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The large system size implies a large total memory requirement, which reflects in a slow-down for execution in a small number of processors due to swapping, cache misses, etc.

References

  1. Zhang R, Lev B, Cuervo JE, Noskov SY, Salahub DR (2010) A guide to QM/MM methodology and applications. In: Advances in quantum chemistry, vol 59. Elsevier Accademic Press, San Diego, pp 353–400

  2. Crespo A, Scherlis DA, Martí MA, Ordejón P, Roitberg AE, Estrin DA (2003) A DFT-based QM–MM approach designed for the treatment of large molecular systems: aplication to chorismate mutase. J Phys Chem B 107:13728–13736

    Article  CAS  Google Scholar 

  3. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The Siesta method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  4. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (resp) model perform in calculating conformational energies of organic and biological molecules. J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  5. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197

    Google Scholar 

  6. Scherlis DA, Martí MA, Ordejón P, Estrin DA (2002) Environment effects on chemical reactivity of heme proteins. Int J Quantum Chem 90:1505–1514

    Article  CAS  Google Scholar 

  7. Martí MA, Scherlis DA, Doctorovich FA, Ordejón P, Estrin DA (2003) Modulation of the NO trans effect in heme proteins: implications for the activation of soluble guanylate cyclase. J Biol Inorg Chem 8:595–600

    Article  Google Scholar 

  8. Martí MA, Capece L, Crespo A, Doctorovich F, Estrin DA (2005) Nitric oxide interaction with cytochrome c’ and its relevance to guanylate cyclase. Why does the iron histidine bond break? J Am Chem Soc 127:7721–7728

    Article  Google Scholar 

  9. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  10. Eichinger M, Tavan P, Hutter J, Parrinello M (1999) A hybrid method for solutes in complex solvents: density functional theory combined with empirical force fields. J Chem Phys 110:10452–10467

    Article  CAS  Google Scholar 

  11. Garcia A, Anglada E, Soler JM (unpublished)

  12. Laino T, Mohamed FI, Laio A, Parrinello M (2006) An efficient linear-scaling electrostatic coupling for treating periodic boundary conditions in QM/MM simulations. J Chem Theory Comput 2:1370–1378

    Article  CAS  Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  14. Fernández-Serra MV, Artacho E (2006) Electrons and hydrogen-bond connectivity in liquid water. Phys Rev Lett 96:016404

    Article  Google Scholar 

  15. Clough A, Beers Y, Klein GP, Rothman LS (1973) Dipole moment of water from stark measurements of H2O, HDO, and D2O. J Chem Phys 59:2254–2259

    Article  CAS  Google Scholar 

  16. Wei D, Salahub DR (1994) A combined density functional and molecular dynamics simulation of a quantum water molecule in aqueous solution. Chem Phys Lett 224:291–296

    Article  CAS  Google Scholar 

  17. The dipole obtained with Siesta using a basis set with triple-ζ plus double polarization orbitals, and cutoff radii of around 9 a.u. is 1.86 D, very close to the experimental value of 1.85 D

  18. Jorgensen WL (1981) Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103:335–340

    Article  CAS  Google Scholar 

  19. Eichinger M, Tavan P, Hutter J, Parrinello M (1999) A hybrid method for solutes in complex solvents: density functional theory combined with empirical force fields. J Chem Phys 110:10452–10467

    Article  CAS  Google Scholar 

  20. Takahashi H, Hori T, Hashimoto H, Nitta T (2001) A hybrid QM/MM method employing real space grids for QM water in the TIP4P water solvents. J Comput Chem 22:1252–1261

    Article  CAS  Google Scholar 

  21. Tu Y, Laaksonen A (1999) On the effect of Lennard–Jones parameters on the quantum mechanical and molecular mechanics coupling in a hybrid molecular dynamics simulation of liquid water. J Chem Phys 111:7519–7525

    Article  CAS  Google Scholar 

  22. Lofere MJ, Loeffler HH, Liedl KR (2003) A QM–MM interface between CHARMM and Turbomole: implementation and application to systems in bulk phase and biologically active systems. J Comput Chem 24:1240–1249

    Article  Google Scholar 

  23. Tunón I, Martins-Costa MTC, Millot C, Ruiz-López MF, Rivail JL (1996) A coupled density functional-molecular mechanics monte carlo simulation method: the water molecule in liquid water. J Chem Phys 17:19–29

    Google Scholar 

  24. Curtis LA, Frurip DJ, Blander M (1979) Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity. J Chem Phys 71:2703–2711

    Article  Google Scholar 

  25. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  26. Biswas PK, Gogonea V (2005) A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical-molecular-mechanical calculations. J Phys Chem 123:164114

    CAS  Google Scholar 

  27. Lyne PD, Hodoscek M, Karplus M (1999) A hybrid QM–MM potential employing hartree-fock or density functional methods in the quantum region. J Phys Chem A 103:3462–3471

    Article  CAS  Google Scholar 

  28. Coulson CA, Eisenberg D (1966) Interactions of H2O molecules in ice I Dipole moment of an H2O molecule in ice. Proc R Soc A (Lond) 291:445–453

    Article  CAS  Google Scholar 

  29. Pillet V, Labarta J, Cortés T, Girona S (1995) Paraver: a tool to visualize and analyze parallel code. Transputer and occam developments, pp 17–32, http://www.bsc.es/paraver

  30. MPItrace instrumentation package, http://www.bsc.es/plantillaA.php?catid=492

  31. Simon HD, Teng S (1995) How good is recursive bisection? SIAM J Sci Comput

  32. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York

    Google Scholar 

  33. Welsch D, Powel MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (MICINN) through grants CSD2007-00050 (Supercomputing and e-Science), and FIS2009-12721-C04. C.S.-N. acknowledges support from MICINN through the Ramon y Cajal Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ordejón.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz-Navarro, C.F., Grima, R., García, A. et al. An efficient implementation of a QM–MM method in SIESTA. Theor Chem Acc 128, 825–833 (2011). https://doi.org/10.1007/s00214-010-0816-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0816-5

Keywords

Navigation