Skip to main content
Log in

Loss of dysbindin-1 affects GABAergic transmission in the PFC

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

It has been shown that dystrobrevin-binding protein 1 gene that encodes the protein dysbindin-1 is associated with risk for cognitive deficits, and studies have shown decreases in glutamate and correlated decreases in dysbindin-1 protein in the prefrontal cortex (PFC) and hippocampus of post-mortem tissue from schizophrenia patients. The PFC and the hippocampus have been shown to play a fundamental role in cognition, and studies in dysbindin-1 null mice have shown alterations in NMDAR located in pyramidal neurons as well as perturbation in LTP and cognitive deficits. The balance between excitatory and inhibitory transmission is crucial for normal cognitive functions; however, there is a dearth of information regarding the effects of loss of dysbindin-1 in GABAergic transmission. Using in vitro whole-cell clamp recordings, Western blots, and immunohistochemistry, we report here that dysbindin-1-deficient mice exhibit a significant decrease in the frequency of sIPSCs and in the amplitude of mIPSCs and significant decreases in PV staining and protein level. These results suggest that loss of dysbindin-1 affects GABAergic transmission at pre- and postsynaptic level and decreases parvalbumin markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alherz F, Alherz M, Almusawi H (2017) NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: a newly identified correlation and its effects in schizophrenia. Schizophr Res Cogn 9(8):1–6

    Google Scholar 

  • Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 52(2):293–304

    CAS  PubMed  Google Scholar 

  • Baek JH, Kim JS, Ryu S, Oh S, Noh J, Lee WK, Park T, Lee YS, Lee D, Kwon JS, Hong KS (2012) Association of genetic variations in DTNBP1 with cognitive function in schizophrenia patients and healthy subjects. Am J Med Genet B Neuropsychiatr Genet 159B(7):841–849

    PubMed  Google Scholar 

  • Bast T, Pezze M, McGarrity S (2017) Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharmacol 174(19):3211–3225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdick KE, Goldberg TE, Funke B, Bates JA, Lencz T, Kucherlapati R, Malhotra AK (2007) DTNBP1 genotype influences cognitive decline in schizophrenia. Schizophr Res 89(1–3):169–172

    PubMed  Google Scholar 

  • Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ, Brandon NJ (2007) Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 12(1):74–86

    CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    CAS  PubMed  Google Scholar 

  • Carr GV, Jenkins KA, Weinberger DR, Papaleo F (2013) Loss of dysbindin-1 in mice impairs reward-based operant learning by increasing impulsive and compulsive behavior. Behav Brain Res 15(241):173–184

    Google Scholar 

  • Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY, Guo N, Huang HP, Xiong W, Zheng H, Zuo PL, Zhang CX, Li W, Zhou Z (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181(5):791–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba S, Hashimoto R, Hattori S, Yohda M, Lipska B, Weinberger DR, Kunugi H (2006) Effect of antipsychotic drugs on DISC1 and dysbindin expression in mouse frontal cortex and hippocampus. J Neural Transm 113(9):1337–1346

    CAS  PubMed  Google Scholar 

  • Coyle JT (2017) Schizophrenia: basic and clinical. Adv Neurobiol 15:255–280

    PubMed  Google Scholar 

  • Cox MM, Tucker AM, Tang J, Talbot K, Richer DC, Yeh L, Arnold SE (2009) Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy, on a C57BL/6J genetic background. Genes Brain Behav 8(4):390–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dienel SJ, Lewis DA (2018) Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis 22:S0969–9961(18)30199–2

    Google Scholar 

  • Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science. 326(5956):1127–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman DK, Tong A, Davis GW (2012) Snapin is critical for presynaptic homeostatic plasticity. J Neurosci 32(25):8716–8724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferando I, Mody I (2015) In vitro gamma oscillations following partial and complete ablation of δ subunit-containing GABAA receptors from parvalbumin interneurons. Neuropharmacology. 88:91–98

    CAS  PubMed  Google Scholar 

  • Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN, Malvar JS, de Vellis J, Sabatti C, Dell'Angelica EC (2010) The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 15(2):115, 204–115, 215

    Google Scholar 

  • Ghiani CA, Dell'Angelica EC (2011) Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade. ASN Neuro. 27;3(2)

    Google Scholar 

  • Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17(8):524–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glen WB Jr, Horowitz B, Carlson GC, Cannon TD, Talbot K, Jentsch JD, Lavin A (2014) Impaired hippocampal synaptic plasticity and contextual fear conditioning in dysbindin deficient mice. Hippocampus. 24(2):204–213. https://doi.org/10.1002/hipo.22215

    Article  CAS  PubMed  Google Scholar 

  • Gokhale A, Vrailas-Mortimer A, Larimore J, Comstra HS, Zlatic SA, Werner E, Manvich DF, Iuvone PM, Weinshenker D, Faundez V (2015) Neuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor. Hum Mol Genet 24(19):5512–5523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gokhale A, Hartwig C, Freeman AH, Das R, Zlatic SA, Vistein R, Burch A, Carrot G, Lewis AF, Nelms S, Dickman DK, Puthenveedu MA, Cox DN, Faundez V (2016) The proteome of BLOC-1 genetic defects identifies the Arp2/3 actin polymerization complex to function downstream of the schizophrenia susceptibility factor dysbindin at the synapse. J Neurosci 36(49):12393–12411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34(5):944–961

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Burgos G, Fish KN, Lewis DA (2011) GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast 2011:723184

    Google Scholar 

  • Guo JY, Ragland JD, Carter CS (2019) Memory and cognition in schizophrenia. Mol Psychiatry 24(5):633–642

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Arion D, Unger T, Maldonado-Avilés JG, Morris HM, Volk DW, Mirnics (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13(2):147–161

    CAS  PubMed  Google Scholar 

  • Hiser J, Koenigs M (2018) The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry 83(8):638–647

    PubMed  Google Scholar 

  • Huang Y, Yoon K, Ko H, Jiao S, Ito W, Wu JY, Yung WH, Lu B, Morozov A (2016) 5-HT3a receptors modulate hippocampal gamma oscillations by regulating synchrony of parvalbumin-positive interneurons. Cereb Cortex 26(2):576–585

    PubMed  Google Scholar 

  • Huang CCY, Muszynski KJ, Bolshakov VY, Balu DT (2019) Deletion of Dtnbp1 in mice impairs threat memory consolidation and is associated with enhanced inhibitory drive in the amygdala. Transl Psychiatry 9(1):132

    PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T (2004) GABAA receptor gamma subunits in the prefrontal cortex of patients with schizophrenia and bipolar disorder. Neuroreport 15(11):1809–1812

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Trantham-Davidson H, Jairl C, Tinsley M, Cannon TD, Lavin A (2009) Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology. 34(12):2601–2608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia JM, Hu Z, Nordman J, Li Z (2014) The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci 34(41):13725–13736

    PubMed  PubMed Central  Google Scholar 

  • Ji YF, Papaleo F, Wang HX, Gao WJ, Weinberger DR, Lu B (2009) Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci U S A 106(46):19593–19598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsgodt KH, Robleto K, Trantham-Davidson H, Jairl C, Cannon TD, Lavin A, Jentsch JD (2011) Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance. Biol Psychiatry 69(1):28–34

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486

    CAS  PubMed  Google Scholar 

  • Kumamoto N, Matsuzaki S, Inoue K, Hattori T, Shimizu S, Hashimoto R, Yamatodani A, Katayama T, Tohyama M (2006) Hyperactivation of midbrain dopaminergic system in schizophrenia could be attributed to the down-regulation of dysbindin. Biochem Biophys Res Commun 345(2):904–909

    CAS  PubMed  Google Scholar 

  • Larimore J, Tornieri K, Ryder PV, Gokhale A, Zlatic SA, Craige B, Lee JD, Talbot K, Pare JF, Smith Y, Faundez V (2011) The schizophrenia susceptibility factor dysbindin and its associated complex sort cargoes from cell bodies to the synapse. Mol Biol Cell 22(24):4854–4867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larimore J, Zlatic SA, Arnold M, Singleton KS, Cross R, Rudolph H, Bruegge MV, Sweetman A, Garza C, Whisnant E, Faundez V (2017) Dysbindin deficiency modifies the expression of GABA neuron and ion permeation transcripts in the developing hippocampus. Front Genet 8:28

    PubMed  PubMed Central  Google Scholar 

  • Lasztóczi B, Klausberger T (2014) Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron. 81(5):1126–1139

    PubMed  Google Scholar 

  • Lee KH, Williams LM, Haig A, Gordon E (2003) “Gamma (40 Hz) phase synchronicity” and symptom dimensions in schizophrenia. Cogn Neuropsychiatry 8(1):57–71

    PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    CAS  PubMed  Google Scholar 

  • Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63(10):1372–1376

    PubMed  Google Scholar 

  • Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67

    CAS  PubMed  Google Scholar 

  • Lewis DA (2014) Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol 26:22–26

    CAS  PubMed  Google Scholar 

  • Lozano-Soldevilla D, ter Huurne N, Cools R, Jensen O (2014) GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance. Curr Biol 24(24):2878–2887

    CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    CAS  PubMed  Google Scholar 

  • Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 28(1):53–67

    CAS  PubMed  Google Scholar 

  • Mullin AP, Gokhale A, Larimore J, Faundez V (2011) Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene. Mol Neurobiol 44(1):53–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullin AP, Sadanandappa MK, Ma W, Dickman DK, VijayRaghavan K, Ramaswami M, Sanyal S, Faundez V (2015) Gene dosage in the dysbindin schizophrenia susceptibility network differentially affect synaptic function and plasticity. J Neurosci 35(19):7643–7653

    PubMed  PubMed Central  Google Scholar 

  • Newell-Litwa K, Salazar G, Smith Y, Faundez V (2009) Roles of BLOC-1 and adaptor protein-3 complexes in cargo sorting to synaptic vesicles. Mol Biol Cell 20(5):1441–1453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newell-Litwa K, Chintala S, Jenkins S, Pare JF, McGaha L, Smith Y, Faundez V (2010) Hermansky-Pudlak protein complexes, AP-3 and BLOC-1, differentially regulate presynaptic composition in the striatum and hippocampus. J Neurosci 30(3):820–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaleo F, Weinberger DR (2011) Dysbindin and schizophrenia: it's dopamine and glutamate all over again. Biol Psychiatry 69(1):2–4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR (2012) Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 17(1):85–98

    CAS  PubMed  Google Scholar 

  • Papaleo F, Burdick MC, Callicott JH, Weinberger DR (2014) Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry 19(3):311–316

    CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20(1):485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saggu S, Cannon TD, Jentsch JD, Lavin A (2013) Potential molecular mechanisms for decreased synaptic glutamate release in dysbindin-1 mutant mice. Schizophr Res 146(1–3):254–263

    PubMed  PubMed Central  Google Scholar 

  • Seamans JK, Nogueira L, Lavin A (2003) Synaptic basis of persistent activity in prefrontal cortex in vivo and in organotypic cultures. Cereb Cortex 13(11):1242–1250

    PubMed  PubMed Central  Google Scholar 

  • Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M, Managò F, Guadagna S, Piras F, Zhang F, Kleinman JE, Hyde TM, Kaalund SS, Pontillo M, Orso G, Caltagirone C, Borrelli E, De Luca MA, Vicari S, Weinberger DR, Spalletta G, Papaleo F, Publisher Correction (2018) Variations in dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun 9(1):3560

    PubMed  PubMed Central  Google Scholar 

  • Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23(19):7407–7411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starcevic M, Dell'Angelica EC (2004) Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Biol Chem 279(27):28393–28401

    CAS  PubMed  Google Scholar 

  • Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, Do KQ (2017) Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 22(7):936–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113:1353–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, LeGros RP, Louneva N, Yeh L, Cohen JW, Hahn CG et al (2009) Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Hum Mol Genet 18:3851–3863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toker L, Mancarci BO, Tripathy S, Pavlidis P (2018) Transcriptomic evidence for alterations in astrocytes and parvalbumin interneurons in subjects with bipolar disorder and schizophrenia. Biol Psychiatry 84(11):787–796

    CAS  PubMed  Google Scholar 

  • Varela-Gomez N, Mata I, Perez-Iglesias R, Rodriguez-Sanchez JM, Ayesa R, Fatjo-Vilas M, Crespo-Facorro B (2015) Dysbindin gene variability is associated with cognitive abnormalities in first-episode non-affective psychosis. Cogn Neuropsychiatry 20(2):144–156

    PubMed  Google Scholar 

  • Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM et al (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61:544–555

    CAS  PubMed  Google Scholar 

  • Weickert CS, Rothmond DA, Hyde TM, Kleinman JE, Straub RE (2008) Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 98:105–110

    PubMed  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27(11):683–690

    CAS  PubMed  Google Scholar 

  • Wirth C, Schubert F, Lautenschlager M, Brühl R, Klär A, Majic T, Lang UE, Ehrlich A, Winterer G, Sander T, Schouler-Ocak M, Gallinat J (2012) DTNBP1 (dysbindin) gene variants: in vivo evidence for effects on hippocampal glutamate status. Curr Pharm Biotechnol 13(8):1513–1521

    CAS  PubMed  Google Scholar 

  • Whittington MA, Traub RD (2003) Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26(12):676–682

    CAS  PubMed  Google Scholar 

  • Wolf C, Jackson MC, Kissling C, Thome J, Linden DE (2011) Dysbindin-1 genotype effects on emotional working memory. Mol Psychiatry 16(2):145–155

    CAS  PubMed  Google Scholar 

  • Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609–1612

    CAS  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci U S A 95(9):5341–5346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Q, Yang F, Xiao Y, Tan S, Husain N, Ren M, Hu Z, Martinowich K, Ng JS, Kim PJ, Han W, Nagata KI, Weinberger DR, Je HS (2016) Regulation of brain-derived neurotrophic factor exocytosis and gamma-aminobutyric acidergic interneuron synapse by the schizophrenia susceptibility gene dysbindin-1. Biol Psychiatry 80(4):312–322

    CAS  PubMed  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55(1-2):1–10

    PubMed  Google Scholar 

  • Zhang JP, Burdick KE, Lencz T, Malhotra AK (2010) Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biol Psychiatry 68(12):1126–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zinkstok JR, de Wilde O, van Amelsvoort TA, Tanck MW, Baas F, Linszen DH (2007) Association between the DTNBP1 gene and intelligence: a case-control study in young patients with schizophrenia and related disorders and unaffected siblings. Behav Brain Funct 3:19

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lavin.

Ethics declarations

All experimental protocols were approved by the Medical University of South Carolina Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trantham-Davidson, H., Lavin, A. Loss of dysbindin-1 affects GABAergic transmission in the PFC. Psychopharmacology 236, 3291–3300 (2019). https://doi.org/10.1007/s00213-019-05285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05285-1

Keywords

Navigation