Skip to main content

Advertisement

Log in

Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

AKB48 and its fluorinate derivate 5F-AKB48 are two novel synthetic cannabinoids belonging to a structural class with an indazole core structure. They are marketed as incense, herbal preparations or chemical supply for their psychoactive Cannabis-like effects.

Objectives

The present study was aimed at investigating the in vitro and in vivo pharmacological activity of AKB48 and 5F-AKB48 in male CD-1 mice and comparing their in vivo effects with those caused by the administration of Δ9-THC and JWH-018.

Results

In vitro competition binding experiments performed on mouse and human CB1 and CB2 receptors revealed a nanomolar affinity and potency of the AKB48 and 5F-AKB48. In vivo studies showed that AKB48 and 5F-AKB48, induced hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promoted aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of AKB48 and 5F-AKB48 stimulated dopamine release in the nucleus accumbens. Behavioural, neurological and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM 251.

Conclusions

For the first time, the present study demonstrates the overall pharmacological effects induced by the administration of AKB48 and 5F-AKB48 in mice and suggests that the fluorination can increase the power and/or effectiveness of SCBs. Furthermore, this study outlines the potential detrimental effects of SCBs on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AM 251:

1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide

AKB48:

N-(1-Adamantyl)-1-pentyl-1H-indazole-3-carboxamide

DA:

Dopamine

NAc shell:

Nucleus accumbens shell

Δ9-THC:

(−)-Δ9-THC or Dronabinol®

JWH-018:

Naphthalen-1-yl-(1-pentylindol-3-yl)methanone

5F-AKB48:

N-(1-Adamantyl)-1-(5-fluoropentyl)-1H-indazole-3- carboxamide

References

  • Barbieri M, Ossato A, Canazza I, Trapella C, Borelli AC, Beggiato S, Rimondo C, Serpelloni G, Ferraro L, Marti M (2016) Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair novel object recognition in mice: behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 109:254–269

    Article  CAS  PubMed  Google Scholar 

  • Bereiter DA, Bereiter DF, Hirata H (2002) Topical cannabinoid agonist, WIN55,212-2, reduces cornea-evoked trigeminal brainstem activity in the rat. Pain 99:547–556

    Article  CAS  PubMed  Google Scholar 

  • Bortolato M, Aru GN, Frau R, Orru M, Luckey GC, Boi G, Gessa GL (2005) The CB receptor agonist WIN 55,212-2 fails to elicit disruption of prepulse inhibition of the startle in Sprague-Dawley rats. Psychopharmacology 177:264–271

    Article  CAS  PubMed  Google Scholar 

  • Brents LK, Gallus-Zawada A, Radominska-Pandya A, Vasiljevik T, Prisinzano TE, Fantegrossi WE, Moran JH, Prather PL (2012) Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem Pharmacol 83:952–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL (2011) Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One 6:e21917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carder B, Olson J (1972) Marihuana and shock induced aggression in rats. Physiol Behav 8:599–602

    Article  CAS  PubMed  Google Scholar 

  • Carlini EA, Gonzales C (1972) Aggressive behaviour induced by marihuana compounds and amphetamine in rats previously made dependent on morphine. Experientia 28:542–544

    Article  CAS  PubMed  Google Scholar 

  • Carlini EA, Lindsey CJ, Tufik S (1976) Environmental and drug interference with effects of marihuana. Ann N Y Acad Sci 281:229–243

    Article  CAS  PubMed  Google Scholar 

  • Compton DR, Johnson MR, Melvin LS, Martin BR (1992) Pharmacological profile of a series of bicyclic cannabinoid analogs: classification as cannabimimetic agents. J Pharmacol Exp Ther 260:201–209

    CAS  PubMed  Google Scholar 

  • Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139:1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Dasilva MA, Grieve KL, Cudeiro J, Rivadulla C (2012) Endocannabinoid CB1 receptors modulate visual output from the thalamus. Psychopharmacology 219:835–845

    Article  CAS  PubMed  Google Scholar 

  • De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, Valentini V, Margiani G, Pintori N, Polis I, Marsicano G, Parsons LH, Di Chiara G (2015a) Stimulation OF IN VIVO dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology.

  • De Luca MA, Castelli MP, Loi B, Porcu A, Martorelli M, Miliano C, Kellett K, Davidson C, Stair LJ, Schifano F, Di Chiara G (2015b) Native CB1 receptor affinity, intrisic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology.

  • Dhawan J, Deng H, Gatley SJ, Makriyannis A, Akinfeleye T, Bruneus M, Dimaio AA, Gifford AN (2006) Evaluation of the in vivo receptor occupancy for the behavioral effects of cannabinoids using a radiolabeled cannabinoid receptor agonist, R-[125/131I]AM2233. Synapse (New York, NY) 60:93–101

    Article  CAS  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241

    Article  CAS  PubMed  Google Scholar 

  • DrugsForum (2012a) AKB-48 (APINACA) drug info. [online] Available at: http://www.drugs-forum.com/forum/showthread.php?t=187522 [Accessed 11 October 2013].

  • DrugsForum (2012b) Experience with UR-144, 5F-UR-144, AKB-48, & STS-135. [online] Available at: http://www.drugs-forum.com/forum/showthread.php?t=192321 [Accessed 10 October 2013].

  • EMCDDA (2009) Understanding the ‘spice’ phenomenon. Thematic papers. European Monitoring Centre for Drugs and Drug Addiction. http://www.emcdda.europa.eu/publications/thematic-papers/spice

    Google Scholar 

  • EMCDDA (2015) European drug report, trends and developments. Thematic papers. European Monitoring Centre for Drugs and Drug Addiction. http://www.emcdda.europa.eu/attachements.cfm/att_239505_EN_TDAT15001ENN.pdf.

    Google Scholar 

  • Fattore L, Spano S, Cossu G, Deiana S, Fadda P, Fratta W (2005) Cannabinoid CB(1) antagonist SR 141716 A attenuates reinstatement of heroin self-administration in heroin-abstinent rats. Neuropharmacology 48:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Liu HF, Huestis MA (2013) First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry. AAPS J 15:1091–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatch MB, Forster MJ (2015) Delta9-Tetrahydrocannabinol-like effects of novel synthetic cannabinoids found on the gray market. Behav Pharmacol 26:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Nieto R, Horta-Junior Jde A, Castellano O, Millian-Morell L, Rubio ME, Lopez DE (2014) Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front Neurosci 8:216

    PubMed  PubMed Central  Google Scholar 

  • Gugelmann H, Gerona R, Li C, Tsutaoka B, Olson KR, Lung D (2014) ‘Crazy monkey’ poisons man and dog: human and canine seizures due to PB-22, a novel synthetic cannabinoid. Clin Toxicol (Phila) 52:635–638

    Article  CAS  Google Scholar 

  • Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334

    Article  CAS  PubMed  Google Scholar 

  • Ham MT, De Jong Y (1975) Absence of interaction between delta9-tetrahydrocannabinol (delta-THC) and cannabidiol (CBD) in aggression, muscle control and body temperature experiments in mice. Psychopharmacologia 41:169–174

    Article  CAS  PubMed  Google Scholar 

  • Hamdam J, Sethu S, Smith T, Alfirevic A, Alhaidari M, Atkinson J, Ayala M, Box H, Cross M, Delaunois A, Dermody A, Govindappa K, Guillon J-M, Jenkins R, Kenna G, Lemmer B, Meecham K, Olayanju A, Pestel S, Rothfuss A, Sidaway J, Sison-Young R, Smith E, Stebbings R, Tingle Y, Valentin J-P, Williams A, Williams D, Park K, Goldring C (2013) Safety pharmacology—current and emerging concepts. Toxicol Appl Pharmacol 273:229–241

    Article  CAS  PubMed  Google Scholar 

  • Hemelt ME, Keller A (2008) Superior colliculus control of vibrissa movements. J Neurophysiol 100:1245–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci Off J Soc Neurosci 11:563–583

    CAS  Google Scholar 

  • Ho WS, Patel S, Thompson JR, Roberts CJ, Stuhr KL, Hillard CJ (2010) Endocannabinoid modulation of hyperaemia evoked by physiologically relevant stimuli in the rat primary somatosensory cortex. Br J Pharmacol 160:736–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann AG, Tsou K, Walker JM (1999) Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. J Neurophysiol 81:575–583

    CAS  PubMed  Google Scholar 

  • Holm NB, Nielsen LM, Linnet K (2015) CYP3A4 mediates oxidative metabolism of the synthetic cannabinoid AKB-48. AAPS J 17:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13:222–257

    Article  CAS  PubMed  Google Scholar 

  • Jenkins S, Worthington M, Harris J, Clarke RW (2004) Differential modulation of withdrawal reflexes by a cannabinoid in the rabbit. Brain Res 1012:146–153

    Article  CAS  PubMed  Google Scholar 

  • Karinen R, Tuv SS, Oiestad EL, Vindenes V (2015) Concentrations of APINACA, 5F-APINACA, UR-144 and its degradant product in blood samples from six impaired drivers compared to previous reported concentrations of other synthetic cannabinoids. Forensic Sci Int 246:98–103

    Article  CAS  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  CAS  PubMed  Google Scholar 

  • Koller VJ, Ferk F, Al-Serori H, Misik M, Nersesyan A, Auwarter V, Grummt T, Knasmuller S (2015) Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 80:130–136

    Article  CAS  Google Scholar 

  • Lapoint J, James LP, Moran CL, Nelson LS, Hoffman RS, Moran JH (2011) Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol (Phila) 49:760–764

    Article  CAS  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Di Chiara G (2006) Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacology 188:63–74

    Article  CAS  PubMed  Google Scholar 

  • Macri S, Lanuzza L, Merola G, Ceci C, Gentili S, Valli A, Macchia T, Laviola G (2013) Behavioral responses to acute and sub-chronic administration of the synthetic cannabinoid JWH-018 in adult mice prenatally exposed to corticosterone. Neurotox Res 24:15–28

    Article  CAS  PubMed  Google Scholar 

  • Malone DT, Taylor DA (2006) The effect of Delta9-tetrahydrocannabinol on sensorimotor gating in socially isolated rats. Behav Brain Res 166:101–109

    Article  CAS  PubMed  Google Scholar 

  • Mansbach RS, Rovetti CC, Winston EN, Lowe JA 3rd (1996) Effects of the cannabinoid CB1 receptor antagonist SR141716A on the behavior of pigeons and rats. Psychopharmacology 124:315–322

    Article  CAS  PubMed  Google Scholar 

  • Marshell R, Kearney-Ramos T, Brents LK, Hyatt WS, Tai S, Prather PL, Fantegrossi WE (2014) In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Delta-THC in mice: inhalation versus intraperitoneal injection. Pharmacol Biochem Behav 124C:40–47

    Article  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Mela F, Fantin M, Zucchini S, Brown JM, Witta J, Di Benedetto M, Buzas B, Reinscheid RK, Salvadori S, Guerrini R, Romualdi P, Candeletti S, Simonato M, Cox BM, Morari M (2005) Blockade of nociceptin/Orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci 25:9591–9601

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Mela F, Guerrini R, Calò G, Bianchi C, Morari M (2004) RAPID COMMUNICATION: blockade of nociceptin/orphanin FQ transmission in rat substantia nigra reverses haloperidol-induced akinesia and normalizes nigral glutamate release. J Neurochem 91:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Ossato A, Trapella C, Seri C, Rimondo C, Serpelloni G (2013) JWH-018 and its N-pentyl-halogenated derivates impair sensory motor functions in mice. First Monothematic Congress of the Italian Society of Pharmacology: “Old and new drugs of abuse, issues and research approaches” Verona, Italy.

  • Martin RS, Secchi RL, Sung E, Lemaire M, Bonhaus DW, Hedley LR, Lowe DA (2003) Effects of cannabinoid receptor ligands on psychosis-relevant behavior models in the rat. Psychopharmacology 165:128–135

    CAS  PubMed  Google Scholar 

  • Martin WJ, Hohmann AG, Walker JM (1996) Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. J Neurosci Off J Soc Neurosci 16:6601–6611

    CAS  Google Scholar 

  • Mattsson JL, Spencer PJ, Albee RR (1996) A performance standard for clinical and functional observational battery examinations of rats. Int J Toxicol 15:239–254

    Article  Google Scholar 

  • McQuade D, Hudson S, Dargan PI, Wood DM (2013) First European case of convulsions related to analytically confirmed use of the synthetic cannabinoid receptor agonist AM-2201. Eur J Clin Pharmacol 69:373–376

    Article  PubMed  Google Scholar 

  • Miczek KA (1978) delta9-tetrahydrocannabinol: antiaggressive effects in mice, rats, and squirrel monkeys. Science (New York, NY) 199:1459–1461

    Article  CAS  Google Scholar 

  • Miczek KA, de Almeida RMM, Kravitz EA, Rissman EF, de Boer SF, Raine A (2007). Neurobiology of Escalated Aggression and Violence. The Journal of Neuroscience. 27:11803–6

  • Miliano C, Serpelloni G, Rimondo C, Mereu M, Marti M, De Luca MA (2016) Neuropharmacology of new psychoactive substances (NPS): focus on the rewarding and reinforcing properties of Cannabimimetics and amphetamine-like stimulants. Front Neurosci 10:153. doi:10.3389/fnins.2016.00153

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales M, Bonci A (2012) Getting to the core of addiction: hooking CB2 receptor into drug abuse? Nat Med 18:504–505

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Egashira N, Sano K, Ogata A, Mizuki A, Mishima K, Iwasaki K, Shoyama Y, Nishimura R, Fujiwara M (2006) Antipsychotics improve Delta9-tetrahydrocannabinol-induced impairment of the prepulse inhibition of the startle reflex in mice. Pharmacol Biochem Behav 84:330–336

    Article  CAS  PubMed  Google Scholar 

  • NFLIS (2013) Annual Report. Thematic paper. U.S. Department Of Justice, D. E. A., Office Of Diversion Control, National Forensic Laboratory Information System. http://www.deadiversion.usdoj.gov/nflis/NFLIS2013AR.pdf

  • Nordstedt C, Fredholm BB (1990) A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid. Anal Biochem 189:231–234

    Article  CAS  PubMed  Google Scholar 

  • Odoardi S, Romolo FS, Strano-Rossi S (2016) A snapshot on NPS in Italy: distribution of drugs in seized materials analysed in an Italian forensic laboratory in the period 2013-2015. Forensic Sci Int 265:116–120

    Article  CAS  PubMed  Google Scholar 

  • Ossato A, Canazza I, Trapella C, Vincenzi F, De Luca MA, Rimondo C, Varani K, Borea PA, Serpelloni G, Marti M (2016) Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 67:31–50

    Article  CAS  Google Scholar 

  • Ossato A, Vigolo A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M (2015) JWH-018 impairs sensorimotor functions in mice. Neuroscience 300:174–188

    Article  CAS  PubMed  Google Scholar 

  • Papanastassiou AM, Fields HL, Meng ID (2004) Local application of the cannabinoid receptor agonist, WIN 55,212-2, to spinal trigeminal nucleus caudalis differentially affects nociceptive and non-nociceptive neurons. Pain 107:267–275

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Gerrits R, Muthian S, Greene AS, Hillard CJ (2002) The CB1 receptor antagonist SR141716 enhances stimulus-induced activation of the primary somatosensory cortex of the rat. Neurosci Lett 335:95–98

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pietr MD, Knutsen PM, Shore DI, Ahissar E, Vogel Z (2010) Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J Neurophysiol 104:2532–2542

    Article  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A 92:12304–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porsolt RD, Lemaire M, Dürmüller N, Roux S (2002) New perspectives in CNS safety pharmacology. Fundamental & Clinical Pharmacology 16:197–207

    Article  CAS  Google Scholar 

  • Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfern WS, Strang I, Storey S, Heys C, Barnard C, Lawton K, Hammond TG, Valentin J-P (2005) Spectrum of effects detected in the rat functional observational battery following oral administration of non-CNS targeted compounds. J Pharmacol Toxicol Methods 52:77–82

    Article  CAS  PubMed  Google Scholar 

  • Reig R, Silberberg G (2014) Multisensory integration in the mouse striatum. Neuron 83:1200–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S7A (2001) US Food and Drug Administration Guidance for industry: safety pharmacology studies for human pharmaceuticals (S7 A).

  • Santacroce R, Corazza O, Martinotti G, Bersani FS, Valeriani G, Di Giannantonio M (2015) Psyclones: a roller coaster of life? Hidden synthetic cannabinoids and stimulants in apparently harmless products. Human psychopharmacology 30:265–271

    Article  PubMed  Google Scholar 

  • Schifano F, Orsolini L, Duccio Papanti G, Corkery JM (2015) Novel psychoactive substances of interest for psychiatry. World psychiatry: official journal of the World Psychiatric Association (WPA) 14:15–26

    Article  Google Scholar 

  • Schneider M, Koch M (2002) The cannabinoid agonist WIN 55,212-2 reduces sensorimotor gating and recognition memory in rats. Behav Pharmacol 13:29–37

    Article  CAS  PubMed  Google Scholar 

  • Schneir AB, Baumbacher T (2012) Convulsions associated with the use of a synthetic cannabinoid product. J Med Toxicol 8:62–64

    Article  PubMed  Google Scholar 

  • Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuro-Psychopharmacol Biol Psychiatry 39:234–243

    Article  CAS  Google Scholar 

  • Simmons JR, Skinner CG, Williams J, Kang CS, Schwartz MD, Wills BK (2011) Intoxication from smoking “spice”. Ann Emerg Med 57:187–188

    Article  PubMed  Google Scholar 

  • Tanda G, Pontieri FE, Frau R, Di Chiara G (1997) Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur J Neurosci 9:2077–2085

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Miczek KA (2014) Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3–44

  • Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    Article  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Rubio ME, Keen JE, Trussell LO (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    Article  CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32

    Article  CAS  PubMed  Google Scholar 

  • van Ree JM, Niesink RJ, Nir I (1984) Delta 1-Tetrahydrocannabinol but not cannabidiol reduces contact and aggressive behavior of rats tested in dyadic encounters. Psychopharmacology 84:561–565

    Article  PubMed  Google Scholar 

  • Vigolo A, Ossato A, Trapella C, Vincenzi F, Rimondo C, Seri C, Varani K, Serpelloni G, Marti M (2015) Novel halogenated derivates of JWH-018: behavioral and binding studies in mice. Neuropharmacology 95:68–82

    Article  CAS  PubMed  Google Scholar 

  • Vikingsson S, Josefsson M, Green H (2015) Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol 39:426–435

    Article  CAS  PubMed  Google Scholar 

  • Vincenzi F, Targa M, Corciulo C, Tabrizi MA, Merighi S, Gessi S, Saponaro G, Baraldi PG, Borea PA, Varani K (2013) Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain 154:864–873

    Article  CAS  PubMed  Google Scholar 

  • Wegener N, Kuhnert S, Thuns A, Roese R, Koch M (2008) Effects of acute systemic and intra-cerebral stimulation of cannabinoid receptors on sensorimotor gating, locomotion and spatial memory in rats. Psychopharmacology 198:375–385

    Article  CAS  PubMed  Google Scholar 

  • Wiebelhaus JM, Poklis JL, Poklis A, Vann RE, Lichtman AH, Wise LE (2012) Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic effects in mice. Drug Alcohol Depend 126:316–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley JL, Compton DR, Dai D, Lainton JA, Phillips M, Huffman JW, Martin BR (1998) Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004

    CAS  PubMed  Google Scholar 

  • Wiley JL, Marusich JA, Huffman JW (2014) Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci 97:55–63

    Article  CAS  PubMed  Google Scholar 

  • Winton-Brown TT, Allen P, Bhattacharyya S, Borgwardt SJ, Fusar-Poli P, Crippa JA, Seal ML, Martin-Santos R, Ffytche D, Zuardi AW, Atakan Z, McGuire PK (2011) Modulation of auditory and visual processing by delta-9-tetrahydrocannabinol and cannabidiol: an FMRI study. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 36:1340–1348

    Article  CAS  Google Scholar 

  • Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat Neurosci 14:1160–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneda T, Kameyama K, Esumi K, Daimyo Y, Watanabe M, Hata Y (2013) Developmental and visual input-dependent regulation of the CB1 cannabinoid receptor in the mouse visual cortex. PLoS One 8:e53082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Drug Policies Department, Presidency of the Council of Ministers, Italy (project NS-Drugs to M. Marti) and by local funds from the University of Ferrara to M. Marti. All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Marti.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Isabella Canazza and Andrea Ossato are equally contributed to this work.

Electronic supplementary material

ESM 1

(DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canazza, I., Ossato, A., Trapella, C. et al. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 233, 3685–3709 (2016). https://doi.org/10.1007/s00213-016-4402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4402-y

Keywords

Navigation