Skip to main content
Log in

Biphasic dopamine regulation in mesoaccumbens pathway in response to non-contingent binge and escalating methamphetamine regimens in the Wistar rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methamphetamine (MA) increases extracellular dopamine (DA) and at chronic high doses induces toxicity as indicated by decreased expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). Notably, rats will self-administer MA in escalating quantities producing such toxicity. However, the impact of MA at sub-toxic doses on DA regulation is not well established.

Objective

The temporal dynamics of DA regulation following cessation of sub-toxic escalating and binge doses of non-contingent MA were investigated as changes therein may be associated with escalation of MA intake.

Materials and methods

MA was administered 3×/day using an established 14-day escalating-dose regimen (0.1–4.0 mg/kg) or a single-day binge-style administration (3 × 4 mg/kg). DA tissue content, DA turnover, TH protein, TH phosphorylation, DAT, and vesicular monoamine transporter 2 were measured in nigrostriatal and mesoaccumbens pathways 48 h and 2 weeks after MA cessation.

Results

Changes in striatal DA regulation were limited to increased DA turnover. However, in the mesoaccumbens pathway, escalating MA had biphasic effects. DA was increased in ventral tegmental area (VTA) and decreased in nucleus accumbens at 48 h post-MA while the reverse was seen at 2 weeks. These changes were matched by similar changes in TH protein and, in the VTA, by changes in DAT.

Conclusion

Escalation of MA intake produces both transient and long-lasting effects upon DA, TH, and DAT in the mesoaccumbens pathway. The eventual decrease of DA in the VTA is speculated to contribute to craving for MA and, thus, may be associated with MA escalation and resulting dopaminergic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Argilli E, Sibley DR, Malenka RC, England PM, Bonci A (2008) Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci 28:9092–9100

    Article  PubMed  CAS  Google Scholar 

  • Bevilaqua LRM, Graham ME, Dunkley PR, von Nagy-Felsobuki EI, Dickson PW (2001) Phosphorylation of Ser19 alters the conformation of tyrosine hydroxylase to increase the rate of phosphorylation of ser40. J Biol Chem 276:40111–40416

    Article  Google Scholar 

  • Boger HA, Middaugh LD, Patrick KS, Ramamoorthy S, Denehy ED, Zhu H, Pacchioni AM, Granholm AC, McGinty JF (2007) Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice. J Neurosci 27:8816–8825

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, McCoy MT, Cai NS, Krasnova IN, Ladenheim B, Beauvais G, Wilson N, Wood W, Becker KG, Hodges AB (2009) Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum. PLoS ONE 4:e7812

    Article  PubMed  Google Scholar 

  • Callaghan RC, Cunningham JK, Sajeev G, Kish SJ (2010) Incidence of Parkinson’s disease among hospital patients with methamphetamine-use disorders. Mov Disord 25(14):2333–2339

    Article  PubMed  Google Scholar 

  • Cass WA, Manning MW (1999) Recovery of presynaptic dopaminergic functioning in rats treated with neurotoxic doses of methamphetamine. J Neurosci 19:7653–7660

    PubMed  CAS  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 27:8138–8148

    Article  PubMed  CAS  Google Scholar 

  • Caudle WM, Colebrooke RE, Emson PC, Miller GW (2008) Altered vesicular dopamine storage in Parkinson’s disease: a premature demise. Trends Neurosci 31:303–308

    Article  PubMed  CAS  Google Scholar 

  • Chu P-W, Hadlock GC, Vieira-Brock P, Stout K, Hanson GR, Fleckenstein AE (2010) Methamphetamine alters vesicular monoamine transporter-2 function and potassium-stimulated dopamine release. J Neurochem 115:325–332

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Muros I, Afonso-Oramas D, Abreu P, Rodriguez M, Gonzalez MC, Gonzalez-Hernandez T (2008) Deglycosylation and subcellular redistribution of VMAT2 in the mesostriatal system during normal aging. Neurobiol Aging 29:1702–1711

    Article  PubMed  CAS  Google Scholar 

  • Danaceau JP, Deering CE, Day JE, Smeal SJ, Johnson-Davis KL, Fleckenstein AE, Wilkins DG (2007) Persistence of tolerance to methamphetamine-induced monoamine deficits. Eur J Pharmacol 559:46–54

    Article  PubMed  CAS  Google Scholar 

  • Dobbs LK, Mark GP (2008) Comparison of systemic and local methamphetamine treatment on acetylcholine and dopamine levels in the ventral tegmental area in the mouse. Neuroscience 156:700–711

    Article  PubMed  CAS  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274

    Article  PubMed  CAS  Google Scholar 

  • Galloway GP, Singleton EG (2009) How long does craving predict use of methamphetamine? Assessment of use one to seven weeks after the assessment of craving: craving and ongoing methamphetamine use. Subst Abuse 1:63–79

    PubMed  Google Scholar 

  • Garwood ER, Bekele W, McCulloch CE, Christine CW (2006) Amphetamine exposure is elevated in Parkinson’s disease. Neurotoxicology 27:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JS, Larson GA, Swant J, Sen N, Javitch JA, Zahniser NR, DeFelice LJ, Khoshbouei H (2009) Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. J Biol Chem 284:2978–2989

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR (2001) Is methamphetamine abuse a risk factor in parkinsonism? Neurotoxicology 22:725–731

    Article  PubMed  CAS  Google Scholar 

  • Haycock JW (1990) Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem 265:11682–11691

    PubMed  CAS  Google Scholar 

  • Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals: multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266:5650–5657

    PubMed  CAS  Google Scholar 

  • Haughey HM, Fleckenstein AE, Hanson GR (1999) Differential regional effects of methamphetamine on the activities of tryptophan and tyrosine hydroxylase. J Neurochem 72:661–668

    Article  PubMed  CAS  Google Scholar 

  • Jedynak JP, Ali SF, Haycock JW, Hope BT (2002) Acute administration of cocaine regulates the phosphorylation of serine-19, -31, and -40 in tyrosine hydroxylase. J Neurochem 82:382–388

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci 95:4029–4034

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  • Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C et al (2010) Methamphetamine self-administration in associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS ONE 5:e8790

    Article  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Melega WP, Lacan G, McCunney SJ (2009) Human methamphetamine pharmacokinetics simulated in the rat: behavioral and neurochemical effects of a 72-h binge. Neuropsychopharmacology 34:2430–2441

    Article  PubMed  CAS  Google Scholar 

  • Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D (2002) Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci 22:8951–8960

    PubMed  CAS  Google Scholar 

  • Lavicky J, Dunn AJ (1993) Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis. J Neurochem 60:602–612

    Article  PubMed  CAS  Google Scholar 

  • Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807

    PubMed  CAS  Google Scholar 

  • Lindgren N, Goiny M, Herrera-Marschitz M, Haycock JW, Hokfelt T, Fisone G (2002) Activation of extracellular signal-regulated kinases 1 and 2 by depolarization stimulates tyrosine hydroxylase phosphorylation and dopamine synthesis in rat brain. Eur J Neurosci 15:769–773

    Article  PubMed  Google Scholar 

  • Lu L, Wang X, Wu P, Xu C, Zhao M, Morales M, Harvey BK, Hoffer BJ, Shaham Y (2009) Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psych 66:137–145

    Article  CAS  Google Scholar 

  • Madden LJ, Flynn CT, Zandonatti MA, May M, Parsons LH, Katner SN et al (2005) Modeling human methamphetamine exposure in nonhuman primates: chronic dosing in the rhesus macaque leads to behavioral and physiological abnormalities. Neuropsychopharmacology 30:350–359

    Article  PubMed  CAS  Google Scholar 

  • Masserano JM, Baker I, Natsukari N, Wyatt RJ (1996) Chronic cocaine administration increases tyrosine hydroxylase activity in the ventral tegmental area through glutaminergic- and dopaminergic D2-receptor mechanisms. Neurosci Lett 217:73–76

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422

    PubMed  CAS  Google Scholar 

  • McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J et al (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki I, Asanuma M, Diaz-Corrales FJ, Fukuda M, Kitaichi K, Miyoshi K, Ogawa N (2006) Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules. FASEB J 20:571–573

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, Yamada K, Mizuno M, Mizuno T, Nitta A, Noda Y, Nabeshima T (2004) Regulations of methamphetamine reward by extracellular signal-regulated kinase 1/2/ets-like gene-1 signaling pathway via the activation of dopamine receptors. Mol Pharm 65:1293–1301

    Article  CAS  Google Scholar 

  • Moszczynska A, Fitzmaurice P, Ang L, Kalasinsky KS, Schmunk GA, Peretti FJ et al (2004) Why is parkinsonism not a feature of human methamphetamine users? Brain 12:363–370

    Article  Google Scholar 

  • Nimitvalai S, Brodie MS (2010) Reversal of prolonged dopamine inhibition of dopaminergic neurons of the ventral tegmental area. J Pharmacol Exp Ther 333:555–563

    Article  Google Scholar 

  • Nirenberg MJ, Chan J, Liu Y, Edwards RH, Pickel WM (1996) Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J Neurosci 16:4135–4145

    PubMed  CAS  Google Scholar 

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  Google Scholar 

  • Pruett BS, Salvatore MF (2010) GFR a-1 receptor expression in the aging nigrostriatal and mesoaccumbens pathways. J Neurochem 115:707–715

    Article  PubMed  CAS  Google Scholar 

  • Riviere GJ, Byrnes KA, Gentry WB, Owens SM (1999) Spontaneous locomotor activity and pharmacokinetics of intravenous methamphetamine and its metabolite amphetamine in the rat. J Pharmacol Exp Ther 291:1220–1226

    PubMed  CAS  Google Scholar 

  • Rossato JI, Bevilaqua LRM, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Salvatore MF, Garcia-Espana A, Goldstein M, Deutch AY, Haycock JW (2000) Stoichiometry of tyrosine hydroxylase phosphorylation in the nigrostriatal and mesolimbic systems in vivo: effects of acute haloperidol and related compounds. J Neurochem 75:225–232

    Article  PubMed  CAS  Google Scholar 

  • Salvatore MF, Waymire JC, Haycock JW (2001) Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J Neurochem 79:349–360

    Article  PubMed  CAS  Google Scholar 

  • Salvatore MF, Zhang JL, Large DM, Wilson PE, Gash CR, Thomas TC et al (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem 90:245–254

    Article  PubMed  CAS  Google Scholar 

  • Salvatore MF, Gerhardt GA, Dayton RD, Klein RL, Stanford JA (2009a) Bilateral effects of unilateral GDNF administration on dopamine- and GABA-regulating proteins in the rat nigrostriatal system. Exp Neurol 219:197–207

    Article  PubMed  CAS  Google Scholar 

  • Salvatore MF, Pruett BS, Spann SL, Dempsey C (2009b) Aging reveals a role for nigral tyrosine hydroxylase ser31 phosphorylation in locomotor activity generation. PLoS ONE 4:e8466

    Article  PubMed  Google Scholar 

  • Schwendt M, Rocha A, See RE, Pacchioni AM, McGinty JF, Kalivas PW (2009) Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter in the prefrontal cortex and dorsal striatum not accompanied by marked dopaminergic depletion. J Pharmacol Exp Ther 331:555–562

    Article  PubMed  CAS  Google Scholar 

  • Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47:242–255

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK (2003) Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 28:1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Shepard JD, Chuang DT, Shaham Y, Morales M (2006) Effect of methamphetamine self-administration on tyrosine hydroxylase and dopamine transporter levels in mesolimbic and nigrostriatal dopamine pathways of the rat. Psychopharmacology 185:505–513

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PK, Jochnowitz ND, Zeevalk GD, Oostveen JA, Hall ED (1996) Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res 738:172–175

    Article  PubMed  CAS  Google Scholar 

  • Thomas DM, Francescutti-Verbeem DM, Kuhn DM (2008) The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. J Neurochem 105:605–616

    Article  PubMed  CAS  Google Scholar 

  • Thomas DM, Francescutti-Verbeem DM, Kuhn DM (2009) Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity. J Neurochem 109:1745–1755

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Corvol J-C, Pages C, Besson M-J, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine rewarding properties. J Neurosci 20:8701–8709

    PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang G-J, Fowler JS, Leonido-Yee M, Franceschi D et al (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  PubMed  CAS  Google Scholar 

  • Volz TJ, Hanson GR, Fleckenstein AE (2007) The role of the plasmalemmal dopamine and vesicular monamine transporters in methamphetamine-induced dopaminergic deficits. J Neurochem 101:883–888

    Article  PubMed  CAS  Google Scholar 

  • Wallace TL, Gudelsky GA, Vorhees CV (1999) Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat. J Neurosci 19:9141–9148

    PubMed  CAS  Google Scholar 

  • Wang J, Carnicella S, Ahmadiantehrani S, He D-Y, Barak S, Kharazia V, Hamida SB, Zapata A, Shippenberg TS, Ron D (2010) Nucleus accumbens-derived glial cell line-derived neurotrophic factor is a retrograde enhancer of dopaminergic tone in the mesocorticolimbic system. J Neurosci 30:14502–14512

    Article  PubMed  CAS  Google Scholar 

  • Waymire JC, Craviso GL, Lichteig K, Johnston JP, Baldwin C, Zigmond RE (1991) Vasoactive intestinal peptide stimulates catecholamine biosynthesis in isolated adrenal chromaffin cells: evidence for a cyclic AMP-dependent phosphorylation and activation of tyrosine hydroxylase. J Neurochem 57:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Weiss F (2005) Neurobiology of craving, conditioned reward and relapse. Curr Op Pharmacol 5:9–19

    Article  CAS  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM et al (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Op Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2009) Roles for nigrostriatal–not just mesocorticolimbic–dopamine in reward and addiction. Trends Neurosci 32:517–524

    Article  PubMed  CAS  Google Scholar 

  • Zahniser NR, Sorkin A (2009) Trafficking of dopamine transporters in psychostimulant actions. Sem Cell Dev Biol 20:411–417

    Article  CAS  Google Scholar 

  • Zaman V, Boger HA, Granholm AC, Rohrer B, Moore A, Buhusi M, Gerhardt GA, Hoffer BJ, Middaugh LD (2008) The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior. Eur J Neurosci 28:1557–1568

    Article  PubMed  Google Scholar 

  • Zellner MR, Ranaldi R (2010) How conditioned stimuli acquire the ability to activate VTA dopamine cells: a proposed neurobiological component of reward-related learning. Neurosci Behav Rev 34:769–780

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Clint Kinney, Sandy Spann, Victoria Fields, and Charles Dempsey for their diligent technical work in the project. This work was supported in part by USPSH grant DA06013 from the National Institute on Drug Abuse.

Disclosure/conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Salvatore.

Additional information

Courtney M. Keller and Michael F. Salvatore contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, C.M., Salvatore, M.F., Pruett, B.S. et al. Biphasic dopamine regulation in mesoaccumbens pathway in response to non-contingent binge and escalating methamphetamine regimens in the Wistar rat. Psychopharmacology 215, 513–526 (2011). https://doi.org/10.1007/s00213-011-2301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2301-9

Keywords

Navigation