Skip to main content

Advertisement

Log in

Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Theory of visual attention (TVA; Bundesen 1990) whole report tasks allow the independent measurement of visual perceptual processing speed and visual short-term memory (vSTM) storage capacity, unconfounded by motor speed. This study investigates how cognitive enhancing effects of psychostimulants depend on baseline performance and individual plasma levels.

Materials and methods

Eighteen healthy volunteers (aged 20–35 years) received single oral doses of either 40 mg methylphenidate, 400 mg modafinil or placebo in a counterbalanced, double-blind crossover design. A whole report of visually presented letter arrays was performed 2.5–3.5 h after drug administration, and blood samples for plasma level analysis were taken.

Results

Methylphenidate and modafinil both enhanced perceptual processing speed in participants with low baseline (placebo) performance. These improvements correlated with subjective alertness. Furthermore, we observed differential plasma level-dependent effects of methylphenidate in lower and higher performing participants: higher plasma levels led to a greater improvement in low-performing participants and to decreasing improvement in high-performing participants. Modafinil enhanced visual short-term memory storage capacity in low-performing participants.

Conclusions

This is the first pharmacological investigation demonstrating the usefulness of a TVA task for high-resolution and repeated cognitive parameter estimation after cognitive-enhancing medication. Our results confirm previous findings of attentional capacity improvements in low performers and extend the baseline dependency model to methylphenidate. Plasma level-dependent effects of psychostimulants can be modelled on an inverted U-shaped dose–response relationship, which is highly relevant to predict cognitive enhancing and detrimental effects of psychostimulants in patients with cognitive deficits (e.g., attention deficit hyperactivity disorder) and healthy volunteers (e.g., self-medicating academics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnsten AFT, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–368

    Article  CAS  PubMed  Google Scholar 

  • Ballon JS, Feifel D (2006) A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67:554–566

    Article  CAS  PubMed  Google Scholar 

  • Baranski JV, Pigeau R, Dinich P, Jacobs I (2004) Effects of modafinil on cognitive and meta-cognitive performance. Hum Psychopharmacol 19:323–332

    Article  CAS  PubMed  Google Scholar 

  • Barch DM (2004) Pharmacological manipulation of human working memory. Psychopharmacology 174:126–135

    Article  CAS  PubMed  Google Scholar 

  • Barnett AG, van der Pols JC, Dobson AJ (2004) Regression to the mean: what it is and how to deal with it. Int J Epidemiol 34:215–220

    Article  PubMed  Google Scholar 

  • Becker PM, Schwartz JR, Feldman NT, Hughes RJ (2004) Effect of modafinil on fatigue, mood, and health-related quality of life in patients with narcolepsy. Pycholpharmacol 171:133–139

    Article  CAS  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AFT, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognition. Biol Psychiatry 60:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Bublak P, Finke K, Krummenacher J, Preger R, Kyllingsbæk S, Müller HJ, Schneider WX (2005) Usability of a theory of visual attention (TVA) for parameter-based measurement of attention II: evidence from two patients with frontal or parietal damage. J Int Neuropsychol Soc 11:843–854

    Article  PubMed  Google Scholar 

  • Bundesen C (1990) A theory of visual attention. Psychol Rev 97:523–547

    Article  CAS  PubMed  Google Scholar 

  • Bundesen C (1998) A computational theory of visual attention. Phil Trans R B 353:1271–1281

    Article  CAS  Google Scholar 

  • Bundesen C, Habekost T, Kyllingsbæk S (2005) A neural theory of visual attention: bridging cognition and neurophysiology. Psychol Rev 112:291–328

    Article  PubMed  Google Scholar 

  • Burnat P, Robles F, Do B (1998) High-performance liquid chromatographic determination of modafinil and its two metabolites in human plasma using solid-phase extraction. J Chromatogr B 706:295–304

    Article  CAS  Google Scholar 

  • Camp-Bruno JA, Herting RL (1994) Cognitive effects of milacemide and methylphenidate in healthy young adults. Psychopharmacology 115:46–52

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short term dopamine D1 receptor stimulation. Science 287:2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Clatworthy PL, Lewis SJG, Birchard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron J-C, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696

    Article  CAS  PubMed  Google Scholar 

  • Cooper NJ, Keage H, Hermens D, Williams LM, Debrota D, Clark CR (2005) The dose-dependent effect of methylphenidate on performance, cognition and psychophysiology. J Integr Neurosci 4:123–144

    Article  PubMed  Google Scholar 

  • Coull JT, Frackowiak RS, Frith CD (1998) Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279:1347–1351

    Article  CAS  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Psychol 18:193–222

    CAS  Google Scholar 

  • Dodds CM, Müller U, Manly T (2009) Effects of psychostimulants on alertness and spatial bias in healthy participants. J Cogn Neurosci 21:529–537

    Article  PubMed  Google Scholar 

  • Doerge DR, Fogle M, Paule MG, McCullagh M, Bajic S (2000) Analysis of methylphenidate and its metabolites ritalinic acid in monkey plasma by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Comm Mass Spectrom 14:619–623

    Article  CAS  Google Scholar 

  • Duncan J, Bundesen C, Olson A, Humphreys G, Chavda S, Shibuya H (1999) Systematic analysis of deficits in visual attention. J Exp Psychol: Gen 128:450–478

    Article  CAS  Google Scholar 

  • Eagle DM, Tufft MRA, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology 192:193–206

    Article  CAS  PubMed  Google Scholar 

  • Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW (1997) Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology 131:196–206

    Article  CAS  PubMed  Google Scholar 

  • Evans SW, Pelham WE, Smith BH, Bukstein O, Gnagy EM, Greiner AR, Altenderfer L, Baron-Myak C (2001) Dose-response effects of methylphenidate on ecologically valid measures of academic performance and classroom behavior in adolescents with ADHD. Exp Clin Psychopharmacol 9:163–175

    Article  CAS  PubMed  Google Scholar 

  • Farah MJ, Haimm C, Sankoorikal G, Chatterjee A (2009) When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. Psychopharmacology 202:541–547

    Article  CAS  PubMed  Google Scholar 

  • Feola TW, de Wit H, Richards JB (2000) Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114:838–848

    Article  CAS  PubMed  Google Scholar 

  • Finke K, Bublak P, Krummenacher J, Kyllingsbæk S, Müller HJ, Schneider WX (2005) Usability of a theory of visual attention (TVA) for parameter-based measurement of attention I: evidence from normal subjects. J Int Neuropsychol Soc 11:832–842

    Article  PubMed  Google Scholar 

  • Finke K, Bublak P, Dose M, Müller HJ, Schneider WX (2006) Parameter-based assessment of spatial and non-spatial attentional deficits in Huntington's disease. Brain 129:1137–1151

    Article  PubMed  Google Scholar 

  • Foote SL, Morrison JH (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res 86:229–242

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive. Ann NY Acad Sci 769:71–84

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri CT, Wargin W, Kanoy R, Patrick K, Shen CD, Youngblood W, Mueller R, Breese G (1982) Clinical studies of methylphenidate serum levels in children and adults. J Am Acad Child Psychiatry 21:19–26

    Article  CAS  PubMed  Google Scholar 

  • Habekost T, Bundesen C (2003) Patient assessment based on a theory of visual attention (TVA). Subtle deficits after a right frontal lesion. Neuropsychologia 41:1171–1188

    Article  PubMed  Google Scholar 

  • Halliday R, Callawy E, Naylor H, Gratzinger P, Prael R (1986) The effect of stimulant drugs on information processing in elderly adults. J Gerontol 41:748–757

    CAS  PubMed  Google Scholar 

  • Hebb DO (1949) Organization of behavior. Wiley, New York

    Google Scholar 

  • Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depends on working memory capacity. Neuroreport 8:3581–3585

    Article  CAS  PubMed  Google Scholar 

  • Koelega HS (1993) Stimulant drugs and vigilance performance: a review. Psychopharmacology 111:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kyllingsbæk S (2006) Modeling visual attention. Behav Res Methods 38:123–133

    PubMed  Google Scholar 

  • Larriviere D, Williams MA, Rizzo M, Bonnie RJ, AAN Ethics, Law and Humanities Committee (2009) Responding to requests from adult patients for neuroenhancements: guidance of the Ethics, Law and Humanities Committee. Neurology 73:1406–1412

    Article  PubMed  Google Scholar 

  • Matthias E, Bublak P, Müller HJ, Schneider WX, Krummenacher J, Finke K (2010) The influence of phasic alertness on spatial and non-spatial components of visual attention. J Exp Psychol: Hum Percept Perform 33:38–56

    Google Scholar 

  • McClellan KJ, Spencer CM (1998) Modafinil: a review of its pharmacology and clinical efficacy in the management of narcolepsy. CNS Drugs 9:311–324

    Article  CAS  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci: 20: RC65: 1–6

  • Midha KK, McKay G, Rawson MJ, Korchinski ED, Hubbard JW (2001) Effects of food on the pharmacokinetics of methylphenidate. Pharm Res 18:1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Ann Rev Neurosci 28:167–202

    Article  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33:1477–1502

    Article  CAS  PubMed  Google Scholar 

  • Minzenberg MJ, Watrous AJ, Yoon JH, Ursu S, Carter CS (2008) Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI. Science 322:1700–1703

    Article  CAS  PubMed  Google Scholar 

  • Müller U, Steffenhagen N, Regenthal R, Bublak P (2004) Effects of modafinil on working memory processes in humans. Psychopharmacology 177:161–169

    Article  PubMed  Google Scholar 

  • Müller U, Suckling J, Zelaya F, Honey G, Faessel H, Williams SCR, Routledge C, Brown J, Robbins TW, Bullmore ET (2005) Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes. Psychopharmacology 180:624–633

    Article  PubMed  Google Scholar 

  • National Institute for Health and Clinical Excellence (NICE) (2008) Attention deficit hyperactivity disorder. Diagnosis and management of ADHD in children, young people and adults. NICE clinical guideline 72. London: NICE

  • Naylor HN, Halliday R, Callawy E (1985) The effect of methylphenidate on information processing. Psychopharmacology 86:90–95

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13:25–42

    Article  CAS  PubMed  Google Scholar 

  • Randall DC, Shneerson JM, Plaha KK, File SE (2003) Modafinil affects mood, but not cognitive function, in healthy young volunteers. Hum Psychopharmacol Clin Exp 18:163–173

    Article  CAS  Google Scholar 

  • Randall DC, Fleck NL, Shneerson JM, File SE (2004) The cognitive-enhancing properties of modafinil are limited in non-sleep-deprived middle-aged adolescents. Pharmacol Biochem Behav 77:547–555

    Article  CAS  PubMed  Google Scholar 

  • Randall DC, Shneerson JM, File SE (2005a) Cognitive effects of modafinil in student volunteers may depend on IQ. Pharmacol Biochem Behav 82:133–139

    Article  CAS  PubMed  Google Scholar 

  • Randall DC, Viswanath A, Bharania P, Esabagh SM, Harley DE, Shneerson JM, File SE (2005b) Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived? J Clin Psychopharmacol 25:175–179

    Article  CAS  PubMed  Google Scholar 

  • Regenthal R, Koch H, Köhler C, Preiss R, Krügel U (2009) Depression-like deficits in rats improved by subchronic modafinil. Psychopharmacology 204:627–639

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Sahakian BJ (1979) ‘Paradoxical’ effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18:931–950

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Roberts AC (2007) Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb Cortex 17(Suppl 1):i151–i160

    Article  PubMed  Google Scholar 

  • Robbins TW, Arnsten AFT (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Ann Rev Neurosci 32:267–287

    Article  CAS  PubMed  Google Scholar 

  • Roberts AOH (1980) Regression toward the mean and the regression-effect bias. In: Echternacht G (ed) New directions for testing and measurement, vol 8. Jossey-Bass, San Francisco, pp 59–82

    Google Scholar 

  • Robertson P, Hellriegel ET (2003) Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet 42:123–137

    Article  CAS  PubMed  Google Scholar 

  • Rocconi LM, Ethington CA (2009) Assessing longitudinal change: adjustment for regression to the mean effects. Res High Educ 50:368–376

    Article  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, Hopwood A, Wallace C, Deakin JFW, Sahakian BJ, Robbins TW (1999) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology 146:482–491

    Article  CAS  PubMed  Google Scholar 

  • Ross SM (2000) Introduction to probability and statistics for engineers and scientists. Academic Press, San Diego

    Google Scholar 

  • Rugino TA, Copley TC (2001) Effects of modafinil in children with attention-deficit/hyperactivity disorder: an open-label study. J Am Acad Child Adolesc Psychiatry 40:230–235

    Article  CAS  PubMed  Google Scholar 

  • Schlösser RGM, Nenadic I, Wagner G, Zysset S, Koch K, Sauer H (2009) Dopaminergic modulation of brain systems subserving decision making under uncertainty: a study with fMRI and methylphenidate challenge. Synapse 63:429–442

    Article  PubMed  Google Scholar 

  • Schwertner HA, Kong SB (2005) Determination of modafinil in plasma and urine by reversed phase high-performance liquid-chromatography. J Pharm Biomed 37:475–479

    Article  CAS  Google Scholar 

  • Sperling G (1960) The information available in brief visual presentations. Psychological Monogr 74:1–29

    Google Scholar 

  • Strauss J, Lewis JL, Korman R, Peloquin L, Perlmutter RA, Salman LF (1984) Effects of methylphenidate on young adults’ performance and event-related potentials in a vigilance and a paired-associates learning test. Psychophysiology 21:609–621

    Article  CAS  PubMed  Google Scholar 

  • Sturm W, Willmes K (2001) On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14:76–84

    Article  Google Scholar 

  • Taylor FB, Russo J (2000) Efficacy of modafinil compared to dextroamphetamine for the treatment of attention deficits hyperactivity disorder in adults. J Child Adolesc Psychopharmacol 10:311–320

    Article  CAS  PubMed  Google Scholar 

  • Thomas RJ, Kwong KK (2006) Modafinil activates cortical and subcortical sites in the sleep-deprived state. Sleep 29:1471–1481

    PubMed  Google Scholar 

  • Thorpy MJ, Schwartz JR, Kovacevic-Ristanovic R, Hayduk R (2003) Initiating treatment with modafinil for control of excessive daytime sleepiness in patients switching from methylphenidate: an open-label safety study assessing three strategies. Psychopharmacology 167:380–385

    CAS  PubMed  Google Scholar 

  • Turner DC, Robbins TW, Clark K, Aron AR, Dowson J, Sahakian BJ (2003a) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology 165:260–269

    CAS  PubMed  Google Scholar 

  • Turner DC, Robbins TW, Clark K, Aron AR, Dowson J, Sahakian BJ (2003b) Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology 168:455–464

    Article  CAS  PubMed  Google Scholar 

  • Turner DC, Clark K, Dowson J, Robbins TW, Sahakian B (2004) Modafinil improves cognition and response inhibition in adult attention-deficits/hyperactivity disorder. Biol Psychiatry 55:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Urbano FJ, Leznik E, Llinás RR (2007) Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Nat Am Soc 104:12554–12559

    Article  CAS  Google Scholar 

  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:121

    Google Scholar 

  • Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang G-J, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain. J Am Med Assoc 301:1148–1154

    Article  CAS  Google Scholar 

  • Wesensten N (2006) Effects of modafinil on cognitive performance and alertness during sleep deprivation. Curr Pharmaceutical Design 12:2457–2471

    Article  CAS  Google Scholar 

  • Winder-Rhodes SE, Chamberlain SR, Idris MI, Robbins TW, Sahakian BJ, Müller U (2009) Effects of modafinil and prazosin on cognitive and physiological functions in healthy volunteers. J Psychopharmacol [Epub ehead of publication]

  • Wong YN, King SP, Laughton WB, McCormick GC, Grebow PE (1998) Single-dose pharmacokinetics of modafinil and methylphenidate given alone or in combination in healthy male volunteers. J Clin Pharmacol 38:276–282

    CAS  PubMed  Google Scholar 

  • Wong YN, King SP, Simcoe D, Gorman S, Laughton W, McCormick GC, Grebow P (1999) Open-label, single-dose pharmacokinetic study of modafinil tablets: influence of age and gender in normal subjects. J Clin Pharmacol 39:281–288

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Hermann J. Müller, Werner X. Schneider and Trevor W. Robbins for their support of this research. This study was funded by grants of the Medical Research Council (MRC) to TM and of the Deutsche Forschungsgemeinschaft (DFG; project MU 773/6-1). UM was supported by an MRC pathfinder grant.

Disclosure/Conflict of interest

U. Müller has received research grant support from Janssen-Cilag and honoraria or travel expenses from Bristol-Myers Squibb, Eli Lilly, Janssen-Cilag, Pharmacia-Upjohn, and UCB Pharma. R. Regenthal has received research grant support from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Finke.

Additional information

Finke and Dodds contributed equally as first authors and Manly and Müller as senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finke, K., Dodds, C.M., Bublak, P. et al. Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study. Psychopharmacology 210, 317–329 (2010). https://doi.org/10.1007/s00213-010-1823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1823-x

Keywords

Navigation