Skip to main content
Log in

Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Early environment can shape the development and function of the mesocorticolimbic dopamine (DA) system and represents a possible risk factor for adult pathologies. One critical variable in the early environment is nutrition, and exposure to high fat (HF) in adulthood is known to change this DA system.

Objectives

We tested whether perinatal HF intake in rats could have long-term effects on DA function and behavior in adult offspring.

Materials and methods

Rat dams were fed either a control (5% fat, CD) or high fat (30% fat, HF) diet during the last week of gestation and lactation, and adult offspring were tested (PND 56–90) after weaning on CD. Locomotor responses to acute and repeated doses of d-amphetamine (AMP, 0.75 mg/kg bw) were determined as were indices of DA function in the ventral tegmental area (VTA), nucleus accumbens (NAc), and the prefrontal cortex (PFC).

Results

Adult HF offspring displayed increased tyrosine hydroxylase expression in the VTA and NAc and significant increases in DA and DOPAC content in the NAc, suggesting an elevated DA tone in this target field. In the NAc, there were no significant changes in D1, D2 receptors, or DA transporter (DAT) levels between diet groups. Perinatal HF feeding reduced AMP-induced locomotion and behavioral sensitization to AMP, suggesting that early diet might have caused long-lasting desensitization of postsynaptic receptor mechanisms in the NAc.

Conclusions

Our results demonstrate that both synthetic activity in VTA neurons and the responsiveness of accumbens DA neurons is altered by maternal nutrition. These effects subside long after termination of exposure to the HF diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG (2002) Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 110(2):245–56

    Article  PubMed  CAS  Google Scholar 

  • Bayer VE, Pickel VM (1990) Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: relationship between immunolabeling density and neuronal associations. J Neurosci 10(9):2996–3013

    PubMed  CAS  Google Scholar 

  • Berthoud HR (2007) Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol Behav 91(5):486–498

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj SK, Beaudry G, Quirion R, Levesque D, Srivastava LK (2003) Neonatal ventral hippocampus lesion leads to reductions in nerve growth factor inducible-B mRNA in the prefrontal cortex and increased amphetamine response in the nucleus accumbens and dorsal striatum. Neuroscience 122(3):669–676

    Article  PubMed  CAS  Google Scholar 

  • Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304(5667):108–110

    Article  PubMed  CAS  Google Scholar 

  • Brake WG, Sullivan RM, Gratton A (2000) Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci 20(14):5538–5543

    PubMed  CAS  Google Scholar 

  • Brake WG, Zhang TY, Diorio J, Meaney MJ, Gratton A (2004) Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. Eur J Neurosci 19(7):1863–1874

    Article  PubMed  Google Scholar 

  • Champagne FA, Chretien P, Stevenson CW, Zhang TY, Gratton A, Meaney MJ (2004) Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J Neurosci 24:4113–4123

    Article  PubMed  CAS  Google Scholar 

  • Corda MG, Piras G, Giorgi O (2006) Neonatal ventral hippocampal lesions potentiate amphetamine-induced increments in dopamine efflux in the core, but not the shell, of the nucleus accumbens. Biol Psychiatry 60(11):1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP (2003) Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol 284(4):R882–R892

    PubMed  CAS  Google Scholar 

  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964(1):107–115

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Bennett J, Evans SB, Kaiyala K, Sipols AJ, Benoit SC (2004) Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav Neurosci 118(3):479–487

    Article  PubMed  CAS  Google Scholar 

  • Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287(5450):1931

    Google Scholar 

  • Fulton S, Richard D, Woodside B, Shizgal P (2004) Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav Brain Res 155(2):319–329

    Article  PubMed  CAS  Google Scholar 

  • Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51(6):811–822

    Article  PubMed  CAS  Google Scholar 

  • Gentry WB, Ghafoor AU, Wessinger WD, Laurenzana EM, Hendrickson HP, Owens SM (2004) (+)-Methamphetamine-induced spontaneous behavior in rats depends on route of (+)METH administration. Pharmacol Biochem Behav 79(4):751–760

    Article  PubMed  CAS  Google Scholar 

  • Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Public Health Nutr 24(2B):611–624

    Google Scholar 

  • Hendrickson H, Laurenzana E, Owens SM (2006) Quantitative determination of total methamphetamine and active metabolites in rat tissue by liquid chromatography with tandem mass spectrometric detection. AAPS J 8(4):E709–E717

    Article  PubMed  CAS  Google Scholar 

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51(6):801–810

    Article  PubMed  CAS  Google Scholar 

  • Huang XF, Yu Y, Zavitsanou K, Han M, Storlien L (2005) Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity. Brain Res Mol Brain Res 135(1–2):150–161

    Article  PubMed  CAS  Google Scholar 

  • Huang XF, Zavitsanou K, Huang X, Yu Y, Wang H, Chen F, Lawrence AJ, Deng C (2006) Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behav Brain Res 175(2):415–419

    Article  PubMed  CAS  Google Scholar 

  • Hutson PH, Bristow LJ, Thorn L, Tricklebank MD (1991) R-(+)-HA-966, a glycine/NMDA receptor antagonist, selectively blocks the activation of the mesolimbic dopamine system by amphetamine. Br J Pharmacol 103(4):2037–2044

    PubMed  CAS  Google Scholar 

  • Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269(1):58–72

    Article  PubMed  CAS  Google Scholar 

  • Karler R, Calder LD, Turkanis SA (1991) DNQX blockade of amphetamine behavioral sensitization. Brain Res 552(2):295–300

    Article  PubMed  CAS  Google Scholar 

  • Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci 45(7):599–606

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal–hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86(5):773–795

    Article  PubMed  CAS  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310(5748):679–683

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer BD (1999) Modulation of the mesolimbic dopamine system by glutamate: role of NMDA receptors. J Neurochem 73(2):839–848

    Article  PubMed  CAS  Google Scholar 

  • Krugel U, Schraft T, Kittner H, Kiess W, Illes P (2003) Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 482(1–3):185–187

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (1990) In vivo measures of monoamines during amphetamine-induced behaviors in rats. Prog Neuropsychopharmacol Biol Psychiatry 14(Suppl):S37–S50

    Article  PubMed  CAS  Google Scholar 

  • Liang NC, Hajnal A, Norgren R (2006) Sham feeding corn oil increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 291(5):R1236–R1239

    PubMed  CAS  Google Scholar 

  • Long H, Walker C-D (2005) Postnatal leptin treatment increases neurogenesis and neuronal survival in the hippocampus of developing rats Abstract for the 35th annual meeting of the Society for Neuroscience, Washington DC, November 12–16, 2005

  • Lovic V, Fleming AS, Fletcher PJ (2006) Early life tactile stimulation changes adult rat responsiveness to amphetamine. Pharmacol Biochem Behav 84(3):497–503

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons. J Physiol 577(Pt 3):907–924

    Article  PubMed  CAS  Google Scholar 

  • Milesi-Halle A, Hendrickson HP, Laurenzana EM, Gentry WB, Owens SM (2005) Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats. Toxicol Appl Pharmacol 209(3):203–213

    Article  PubMed  CAS  Google Scholar 

  • Munzberg H, Flier JS, Bjorbaek C (2004) Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145(11):4880–4889

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models prostaglandins. Leukot Essent Fatty Acids 70(3):265–275

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C. The Rat Brain in stereotaxic coordinates (2005). 5th edition Elsevier Academic

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25:192–216

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A (2006) Perinatal nutrition and hormone-dependent programming of food intake. Horm Res 65(Suppl 3):83–89

    Article  PubMed  CAS  Google Scholar 

  • Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2):59–65

    Article  PubMed  CAS  Google Scholar 

  • Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res 401(2):322–30

    Article  PubMed  CAS  Google Scholar 

  • Riviere GJ, Gentry WB, Owens SM (2000) Disposition of methamphetamine and its metabolite amphetamine in brain and other tissues in rats after intravenous administration. J Pharmacol Exp Ther 292(3):1042–1047

    PubMed  CAS  Google Scholar 

  • Seeley RJ, Woods SC (2003) Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 4(11):901–909

    Article  PubMed  CAS  Google Scholar 

  • Shizgal P, Fulton S, Woodside B (2001) Brain reward circuitry and the regulation of energy balance. Int J Obes Relat Metab Disord 25(Suppl 5):S17–S21

    Article  PubMed  CAS  Google Scholar 

  • Szot P, White SS, Veith RC, Rasmussen DD (1999) Reduced gene expression for dopamine biosynthesis and transport in midbrain neurons of adult male rats exposed prenatally to ethanol. Alcohol Clin Exp Res 23(10):1643–1649

    PubMed  CAS  Google Scholar 

  • Trottier G, Koski KG, Brun T, Toufexis DJ, Richard D, Walker C-D (1998) Increased fat intake during lactation modifies hypothalamic–pituitary adrenal responsiveness in developing rat pups: a possible role for leptin. Endocrinology 139(9):3704–3711

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63(3):241–320

    Article  PubMed  CAS  Google Scholar 

  • Walker C-D, Deschanps S, Proulx K, Tu M, Salzman C, Woodside B, Lupien S, Gallo-Payet N, Richard D (2004) Mothers to infant of infant to mother? Reciprocal regulation of responsiveness to stress in rodents and the implications for humans. J Psychiatry Neurosci 29:364–382

    PubMed  Google Scholar 

  • Walker C-D, Long H, Williams S, Richard D (2007) Long-lasting effects of neonatal leptin on hippocampal function, synaptic proteins and NMDA receptor subunits in the rat. J Neurosci Res 85(4):816–828

    Article  PubMed  CAS  Google Scholar 

  • Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25(47):11045–11054

    Article  PubMed  CAS  Google Scholar 

  • Woods SC, D'Alessio DA, Tso P, Rushing PA, Clegg DJ, Benoit SC, Gotoh K, Liu M, Seeley RJ (2004) Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiol Behav 83(4):573–578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Hong Long, Susan Xu, and Luc Moquin for their expert help with the animals, the autoradiography, and the use of the LC-EC system. This work was supported by a grant from the Canadian Institutes for Health Research (CIHR) grant #FRN 53350 to CDW and by a fellowship from the Fonds de Recherche en Santé du Quebec (FRSQ) to LN, and by a grant from the National Institute on Drug Abuse DA07610 to SMO.

Disclosure/Conflict of interest

All authors recognize having no potential or real conflict of interest related to the subject of the present report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire-Dominique Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naef, L., Srivastava, L., Gratton, A. et al. Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology 197, 83–94 (2008). https://doi.org/10.1007/s00213-007-1008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1008-4

Keywords

Navigation