Skip to main content
Log in

Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the Klein–Gordon equation in the non-relativistic limit regime, i.e. the speed of light \(c\) tending to infinity. We construct an asymptotic expansion for the solution with respect to the small parameter depending on the inverse of the square of the speed of light. As the first terms of this asymptotic can easily be simulated our approach allows us to construct numerical algorithms that are robust with respect to the large parameter \(c\) producing high oscillations in the exact solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234, 253–283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Num. Math. 120, 189–229 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6, 201–230 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bjorken, J.D., Drell, S.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  5. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. Wiley-Interscience, New York (1959)

  6. Brenner, P., Wahl, W.: Global classical solutions of nonlinear wave equations. Math. Z. 176, 87–121 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)

  8. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Engquist, B., Fokas, A., Hairer, E., Iserles, A.: Highly Oscillatory Problems. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  10. Faou, E.: Geometric numerical integration and Schrödinger equations. Zurich lectures in advanced mathematics. European Mathematical Society (EMS), Zürich (2012)

  11. Faou, E., Grébert, B.: Hamiltonian interpolation of splitting approximations for nonlinear PDEs. Found. Comput. Math. 11, 381–415 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part I: finite dimensional discretization. Numer. Math. 114, 429–458 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part II: abstract splitting. Numer. Math. 114, 459–490 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ginibre, J., Velo, G.: The global Cauchy problem for the non linear Klein–Gordon equation. Math. Z. 189, 487–505 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2001)

    Article  MathSciNet  Google Scholar 

  16. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

  17. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiménez, S., Vazquez, L.: Analysis of four numerical schemes for a nonlinear Klein–Gordon equation. Appl. Math. Comput. 35, 61–94 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Machihara, S., Masmoudi, N., Nakanishi, K.: Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations. Math. Ann. 322, 603–621 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Masmoudi, N., Nakanishi, K.: From nonlinear Klein–Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pascual, P.J., Jiménez, S., Vazquez, L.: Numerical simulations of a nonlinear Klein–Gordon model. Lect. Notes Phys. 448, 211–270 (1995)

    Article  Google Scholar 

  23. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 6, 437–483 (1997)

    Google Scholar 

  24. Sakurai, J.J.: Advanced Quantum Mechanics. Addison Wesley, Reading (1967)

  25. Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein–Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Christian Lubich for his helpful comments, and to Markus Penz for fruitful discussions during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Faou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faou, E., Schratz, K. Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441–469 (2014). https://doi.org/10.1007/s00211-013-0567-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0567-z

Mathematics Subject Classification (2000)

Navigation