Skip to main content
Log in

A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L 2 and the H 1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order. Numerical experiments corroborate the theoretical convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulle A.: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. GAKUTO Int. Ser. Math. Sci. Appl. 31, 135–184 (2009)

    Google Scholar 

  2. Abdulle, A.: A priori and a posteriori analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM, 16, World Scientific Publishing, Singapore, pp. 280–305 (2011)

  3. Abdulle A., Vilmart G.: The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods. C. R. Acad. Sci. Paris, Ser. I 349, 1041–1046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdulle A., Vilmart, G.: Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems. preprint, http://infoscience.epfl.ch/record/163326 (submitted for publication)

  5. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), (Teubner-Texte Math., vol. 133) Teubner, Stuttgart, pp. 9126 (1993)

  6. André N., Chipot M.: Uniqueness and nonuniqueness for the approximation of quasilinear elliptic equations. SIAM J. Numer. Anal. 33(5), 1981–1994 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baker G.A., Dougalis V.A.: The effect of quadrature errors on finite element approximations for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 577–598 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bear J., Bachmat Y.: Introduction to modelling of transport phenomena in porous media. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  9. Brenner, S., Scott, R.: The mathematical theory of finite element methods, 3rd edn. Texts in Applied Mathematics, 15. Springer, New York (2008)

  10. Chipot, M.: Elliptic equations: an introductory course. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2009)

  11. Ciarlet P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2, 17–351 (1991)

    Article  Google Scholar 

  12. Ciarlet P.G., Raviart P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element method. In: Aziz, A.K. (ed) Math. Foundation of the FEM with Applications to PDE, pp. 409–474. Academic Press, New York (1972)

    Google Scholar 

  13. Douglas J. Jr, Dupont T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29(131), 689–696 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas J. Jr, Dupont T., Serrin J.: Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch. Ration. Mech. Anal. 42, 157–168 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. E, W., Engquist B., Li X., Ren W., Vanden-Eijnden E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Engquist B., Souganidis P.E.: Asymptotic and numerical homogenization. Acta Numer. 17, 147–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feistauer M., Křížek M., Sobotíková V.: An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type. East-West J. Numer. Math. 1(4), 267–285 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Feistauer M., Ženíšek A.: Finite element solution of nonlinear elliptic problems. Numer. Math. 50(4), 451–475 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geers M.G.D., Kouznetsova A.G., Brekelmans W.A.M.: Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)

    Article  MATH  Google Scholar 

  20. Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  21. Hildebrandt S., Wienholtz E.: Constructive proofs of representation theorems in separable Hilbert space. Comm. Pure Appl. Math. 17, 369–373 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hlaváček I., Křížek M., Malý J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184(1), 168–189 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korotov S., Křížek M.: Finite element analysis of variational crimes for a quasilinear elliptic problem in 3D. Numer. Math. 84(4), 549–576 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13(3), 115–162 (1959)

    MathSciNet  Google Scholar 

  25. Nitsche, J.A.: On L -convergence of finite element approximations to the solution of a nonlinear boundary value problem. Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976), Academic Press, London, pp. 317–325 (1977)

  26. Poussin J., Rappaz J.: Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math. 69(2), 213–231 (1994)

    Article  MathSciNet  Google Scholar 

  27. Raviart, P.A.: The use of numerical integration in finite element methods for solving parabolic equations. In: Miller, J.J.H. (ed.) Topics in Numerical Analysis, pp. 233–264. Academic Press, London-New York (1973)

  28. Schatz A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schatz A.H., Wang J.P.: Some new error estimates for Ritz–Galerkin methods with minimal regularity assumptions. Math. Comp. 65(213), 19–27 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Strang G.: Variational crimes in the finite element method. In: Aziz, A.K. (ed) Math. Foundation of the FEM with Applications to PDE, pp. 689–710. Academic Press, New York (1972)

    Google Scholar 

  31. Warrick A.W.: Time-dependent linearized infiltration: III. Strip and disc sources. Soil. Sci. Soc. Am. J. 40, 639–643 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assyr Abdulle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulle, A., Vilmart, G. A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems. Numer. Math. 121, 397–431 (2012). https://doi.org/10.1007/s00211-011-0438-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0438-4

Mathematics Subject Classification (2000)

Navigation