Skip to main content

Advertisement

Log in

Pharmacological targets of breast cancer stem cells: a review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ATM:

Ataxia telangiectasia-mutated serine/threonine kinase

Bcl2:

B cell lymphoma 2

BCRP:

Breast cancer resistance protein

BCSCs:

Breast cancer stem cells

BIK:

Bcl2 interacting killer

Bmi-1:

B cell-specific Moloney murine leukemia virus integration site 1

BMP2:

Bone morphogenetic protein 2

CAIX:

Carbonic anhydrase-IX

CAT:

Catalase

CSL:

CBF-1/RBPJ-κ in Homo sapiens/Mus musculus, respectively, Suppressor of hairless in Drosophila melanogaster, Lag-1 in Caenorhabditis elegans

CDK:

Cyclin-dependent kinases

ChKs:

Checkpoint kinases

c-myc:

C-terminus of myc protein

DHh:

Desert Hedgehog

DLL4:

Delta-like 4 ligand

DOX:

Doxorubicin

DRs:

Death receptors

EMT:

Epithelial-to-mesenchymal transition

EpICD:

EpCAM intracellular domain

FAS:

Fatty acid synthase

FTC:

Fumitremorgin C

Gl:

Glioma-associated oncogene

GLUT:

Glucose transporter

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GPO:

Glutathione peroxidase

GSK-3β:

Glycogen synthase kinase 3 β

HDR:

Homology-directed recombination

Hh:

Hedgehog

HK:

Hexose kinase

IHh:

Indian Hedgehog

IL:

Interleukin

JAK:

Janus kinase

LRP:

Low-density lipoprotein-related receptor

MAML:

Mastermind like

m-TOR:

Mammalian target of rapamycin

Nanog:

Gene named after the Tír na nÓg legend

NHEJ:

Nonhomologous end joining

NICD:

Notch intracellular domain

non-BCSCs:

Non-breast cancer stem cells or bulk tumor cells

Oct-4:

Octamer-binding transcription factor

PDZ:

Disheveled PDZ domain

PI3-k:

Phosphoinositide 3-kinase

PTEN:

Phosphatase and tensin homolog

SCs:

Normal stem cells

SHh:

Sonic Hedgehog

SMADs:

Homologs of Sma and MAD proteins

Smo:

Smoothened

SOD:

Superoxide dismutase

SOX:

Sry-related HMG box

STAT:

Signal transducers and activators of transcription

STAT3:

Signal transducer and activator of transcription factor 3

TGF-β:

Transforming growth factor-β

TR:

Thio-redoxin

References

  • Ablett MP, Singh JK, Clarke RB (2012) Stem cells in breast tumours: are they ready for the clinic? Eur J Cancer 48:2104–2116

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Nishio Y, Inoue M, Wang X-J, We S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71

    Article  CAS  PubMed  Google Scholar 

  • Al-Assar O, Mantoni T, Lunardi S, Kingham G, Helleday T, Brunner TB (2011) Breast cancer stem-like cells show dominant homologous recombination due to a larger S-G2 fraction. Cancer Biol Ther 11:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkema M, Wiegant J, Raap AK, Bems A, van Lohuizen M (1993) Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet 2:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae S-K, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RL, Yang WT, Rosen DG, Landis MD, Wong H, Lewis MT, Creighton CJ, Sexton KR, Hilsenbeck SG, Sahin AA (2013) Cancer stem cell markers are enriched in normal tissue adjacent to triple negative breast cancer and inversely correlated with DNA repair deficiency. Breast Cancer Res 15:R77

    Article  PubMed  PubMed Central  Google Scholar 

  • Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    Article  CAS  PubMed  Google Scholar 

  • Bashyal Insan M, Jaitak V (2014) New approaches to target cancer stem cells: current scenario. Mini Rev Med Chem 14:20–34

    Article  CAS  Google Scholar 

  • Benvenuto M, Masuelli L, De Smaele E, Fantini M, Mattera R, Cucchi D, Bonanno E, Di Stefano E, Frajese GV, Orlandi A (2016) In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget 7:9250

    Article  PubMed  PubMed Central  Google Scholar 

  • Borah A, Raveendran S, Rochani A, Maekawa T, Kumar D (2015) Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogene 4:e177

    Article  CAS  Google Scholar 

  • Bostad M, Olsen CE, Peng Q, Berg K, Høgset A, Selbo PK (2015) Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133–saporin by photochemical internalization—a minimally invasive cancer stem cell-targeting strategy. J Control Release 206:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat M-L, Oakes SR, Lindeman GJ, Visvader JE (2008) Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3:429–441

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Zhu H, Shao L, Chen YW (2000) CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 275:1829–1838

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283:17635–17651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase Cϵ promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 284:26533–26546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozorgi A, Khazaei M, Khazaei MR (2015) New findings on breast cancer stem cells: a review. J Breast Cancer 18:303–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Branda M, Wands JR (2006) Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology 43:891–902

    Article  CAS  PubMed  Google Scholar 

  • Brandsma I, van Gent DC (2012) Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  • Britton K, Eyre R, Harvey I, Stemke-Hale K, Browell D, Lennard T, Meeson A (2012) Breast cancer, side population cells and ABCG2 expression. Cancer Lett 323:97–105

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    Article  CAS  PubMed  Google Scholar 

  • Bruna A, Greenwood W, Le Quesne J, Teschendorff A, Miranda-Saavedra D, Rueda OM, Sandoval JL, Vidakovic AT, Saadi A, Pharoah P (2012) TGFβ induces the formation of tumour-initiating cells in claudin low breast cancer. Nat Commun 3:1055

    Article  PubMed  CAS  Google Scholar 

  • Cerdan C, Bhatia M (2010) Novel roles for Notch, Wnt and Hedgehog in hematopoesis derived from human pluripotent stem cells. Int J Dev Biol 54:955–964

    Article  CAS  PubMed  Google Scholar 

  • Chapellier M, Maguer-Satta V (2016) BMP2, a key to uncover luminal breast cancer origin linked to pollutant effects on epithelial stem cells niche. Mol Cell Oncol 3:e1026527

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan C-W, Wei S, Hao W, Kilgore J, Williams NS (2009) Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Pamu S, Cui Q, Chan TH, Dou QP (2012) Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg Med Chem 20:3031–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Huang Y-h, J-l C (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung-Ong K, Giaever G, Nislow C (2013) DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol 20:648–659

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Chun Y-S, Kim T-Y, Park J-W (2010) HIF-2α enhances β-catenin/TCF-driven transcription by interacting with β-catenin. Cancer Res 70:10101–10111

    Article  CAS  PubMed  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  • Chung SS, Vadgama JV (2015) Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3–NFκB signaling. Anticancer Res 35:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  • Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB (2004) Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14(3):259–266

    Article  PubMed  Google Scholar 

  • Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 133:75–87

    Article  CAS  PubMed  Google Scholar 

  • Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13:2236–2252

    Article  PubMed  Google Scholar 

  • Culig Z (2011) Cytokine disbalance in common human cancers. Biochim Biophys Acta (BBA)-Mol Cell Res 1813:308–314

    Article  CAS  Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1420

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wu X, Weng H, Song F (2016) The siRNA-mediated silencing of Bmi-1 promotes apoptosis and inhibits invasion of MCF-7 breast cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi= Chin J Cell Mol Immunol 32:1036

    Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domen J, Gandy KL, Weissman IL (1998) Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91:2272–2282

    CAS  PubMed  Google Scholar 

  • Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP (2012) G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 122:1469–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23:316–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36:59–72

    Article  CAS  PubMed  Google Scholar 

  • Epenetos A, Kousparou C, Stylianou S (2009) Inhibition of Notch signaling for the treatment of human carcinomas. Cancer Research. Amer Assoc Cancer Research 615 Chestnut St, 17th floor, Philadelphia, PA 19106-4404 USA

  • Ferlay J, Héry C, Autier P, Sankaranarayanan R (2010) Global burden of breast cancer. In: Li C (ed) Breast cancer epidemiology. Springer, New York

    Google Scholar 

  • Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:1

    Article  CAS  Google Scholar 

  • Fleming HE, Janzen V, Celso CL, Guo J, Leahy KM, Kronenberg HM, Scadden DT (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil J, Bernard D, Peters G (2005) Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol 24:117–125

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson RJ, Rich JN (2007) Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  CAS  PubMed  Google Scholar 

  • Gilboa-Geffen A, Hamar P, Le MT, Wheeler LA, Trifonova R, Petrocca F, Wittrup A, Lieberman J (2015) Gene knockdown by EpCAM aptamer–siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells. Mol Cancer Ther 14:2279–2291

    Article  CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestier C, Monville F, Wicinski J, Cabaud O, Cervera N, Josselin E, Finetti P, Guille A, Larderet G, Viens P (2012) Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target. Stem Cells 30:1327–1337

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32:2261–2272

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi N, Ghahremani MH, Amini M, Atyabi F, Ostad SN, Shabani Ravari N, Nateghian N, Dinarvand R (2014) CD44-targeted docetaxel conjugate for cancer cells and cancer stem-like cells: a novel hyaluronic acid-based drug delivery system. Chem Biol Drug Des 83:741–752

    Article  CAS  PubMed  Google Scholar 

  • Goodrich LV, Scott MP (1998) Hedgehog and patched in neural development and disease. Neuron 21:1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Green JL, La J, Yum KW, Desai P, Rodewald L-W, Zhang X, Leblanc M, Nusse R, Lewis MT, Wahl GM (2013) Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci 110:6991–6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenow K, Clarke AR (2012) Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Physiol Rev 92:75–99

    Article  CAS  PubMed  Google Scholar 

  • Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR, Golde TE, Miele L, Foreman KE (2010) Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 30:3853–3867

    CAS  PubMed  Google Scholar 

  • Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM (2012) Wnt pathway inhibition via the targeting of frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci 109:11717–11722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison H, Farnie G, Brennan KR, Clarke RB (2010a) Breast cancer stem cells: something out of notching? Cancer Res 70:8973–8976

    Article  CAS  PubMed  Google Scholar 

  • Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010b) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Gu J, Lim LY, Yuan ZX, Mo J (2016) Nanomedicine-mediated therapies to target breast cancer stem cells. Front Pharmacol 7:313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heim MH, Kerr IM, Stark GR, Darnell Jr JE (1995) Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 267:1347–1349

    Article  CAS  PubMed  Google Scholar 

  • Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoey T, Yen W-C, Axelrod F, Basi J, Donigian L, Dylla S, Fitch-Bruhns M, Lazetic S, Park I-K, Sato A (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5:168–177

    Article  CAS  PubMed  Google Scholar 

  • Honeth G, Bendahl P-O, Ringnér M, Saal LH, Gruvberger-Saal SK, Lövgren K, Grabau D, Fernö M, Borg Å, Hegardt C (2008) The CD44+/CD24-phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:1

    Article  CAS  Google Scholar 

  • Honma N, Horii R, Ito Y, Saji S, Younes M, Iwase T, Akiyama F (2015) Differences in clinical importance of Bcl-2 in breast cancer according to hormone receptors status or adjuvant endocrine therapy. BMC Cancer 15:1

    Article  CAS  Google Scholar 

  • Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Z-J, Luo X, Zhang W, Peng F, Cui B, Wu S-J, Zheng F-M, Xu J, Xu L-Z, Long Z-J (2015) Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget 6:6326

    PubMed  PubMed Central  Google Scholar 

  • Hu C, Niestroj M, Yuan D, Chang S, Chen J (2015) Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J Nanomedicine 10:2065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol 13:211–217

    Article  CAS  PubMed  Google Scholar 

  • Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69–74

    Article  CAS  PubMed  Google Scholar 

  • Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O (1994) Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 19:222–227

    Article  CAS  PubMed  Google Scholar 

  • Imrich S, Hachmeister M, Gires O (2012) EpCAM and its potential role in tumor-initiating cells. Cell Adhes Migr 6:30–38

    Article  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Paranandi KS, Sridharan S, Basu A (2013) Autophagy in breast cancer and its implications for therapy. Am J Cancer Res 3:251–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang G-B, Hong I-S, Kim R-J, Lee S-Y, Park S-J, Lee E-S, Park JH, Yun C-H, Chung J-U, Lee K-J (2015) WNT/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res 75:1691–1702

    Article  CAS  PubMed  Google Scholar 

  • Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kai K, Arima Y, Kamiya T, Saya H (2010) Breast cancer stem cells. Breast Cancer 17:80–85

    Article  PubMed  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  PubMed  Google Scholar 

  • Ke X-Y, Ng VWL, Gao S-J, Tong YW, Hedrick JL, Yang YY (2014) Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 35:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Kessenbrock K, Dijkgraaf GJ, Lawson DA, Littlepage LE, Shahi P, Pieper U, Werb Z (2013) A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 13:300–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JB, Ko E, Han W, Shin I, Park SY, Noh D-Y (2008) Berberine diminishes the side population and ABCG2 transporter expression in MCF-7 breast cancer cells. Planta Med 74:1693–1700

    Article  CAS  PubMed  Google Scholar 

  • Kim S-Y, Rhee JG, Song X, Prochownik EV, Spitz DR, Lee YJ (2012) Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM. PLoS One 7:e50423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-Y, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT, Lee YJ (2013) Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal 25:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M (2008) Cancer stem cell markers in common cancers–therapeutic implications. Trends Mol Med 14:450–460

    Article  CAS  PubMed  Google Scholar 

  • Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, Wrba F, De Santis M, Zeillinger R, Hudec M, Dittrich C (2011) Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol 50:700–710

    Article  PubMed  Google Scholar 

  • Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol 7:e1000121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korkaya H, Kim G-I, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D'Angelo R, Paulson AK (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47:570–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071–6074

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Yu X, Lin X, He S (2016) Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. Int J Mol Med 37:369–377

    Article  CAS  PubMed  Google Scholar 

  • Lang J-Y, Hsu JL, Meric-Bernstam F, Chang C-J, Wang Q, Bao Y, Yamaguchi H, Xie X, Woodward WA, Yu D (2011) BikDD eliminates breast cancer initiating cells and synergizes with lapatinib for breast cancer treatment. Cancer Cell 20:341–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP (2016) Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. Pharmacol Ther 158:71–90

    Article  CAS  PubMed  Google Scholar 

  • Li Z (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2:1

    Article  Google Scholar 

  • Li Y, Zhang T, Korkaya H, Liu S, Lee H-F, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS (2010) Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res 16:2580–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R-J, Ying X, Zhang Y, Ju R-J, Wang X-X, Yao H-J, Men Y, Tian W, Yu Y, Zhang L (2011) All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells. J Control Release 149:281–291

    Article  CAS  PubMed  Google Scholar 

  • Li R, You S, Hu Z, Chen ZG, Sica GL, Khuri FR, Curran WJ, Shin DM, Deng X (2013) Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PLoS One 8:e74670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li P-K, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ (2014) Multi-targeted therapy of cancer by niclosamide: a new application for an old drug. Cancer Lett 349:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL, Chang JC (2016) The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett 376:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat M-L, Gyorki DE, Ward T, Partanen A (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  CAS  PubMed  Google Scholar 

  • Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH (2004) Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther 11:309–316

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, Ahn N-S, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Bandyopadhyay A, Nichols RW, Wang L, Hinck AP, Wang S, Sun L-Z (2012) Blockade of autocrine TGF-β signaling inhibits stem cell phenotype, survival, and metastasis of murine breast cancer cells. J Stem Cell Res Ther 2:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Sun B, Zhao X, Zhao X, Sun T, Gu Q, Yao Z, Dong X, Zhao N, Liu N (2013) CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32:544–553

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen X, Ward T, Mao Y, Bockhorn J, Liu X, Wang G, Pegram M, Shen K (2016a) Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Int J Biochem Cell Biol 71:12–23

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen X, Ward T, Pegram M, Shen K (2016b) Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumor Biol 37(7):9825–9835

    Article  CAS  Google Scholar 

  • Liu M, Zhang W, Tang W, Wang Y, Zhao X, Wang X, Qi X, Li J (2016c) Isocyclopamine, a novel synthetic derivative of cyclopamine, reverts doxorubicin resistance in MCF-7/ADR cells by increasing intracellular doxorubicin accumulation and downregulating breast cancer stem-like cells. Tumor Biol 37:1919–1931

    Article  CAS  Google Scholar 

  • Lock F, McDonald P, Lou Y, Serrano I, Chafe S, Ostlund C, Aparicio S, Winum J-Y, Supuran C, Dedhar S (2013) Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 32:5210–5219

    Article  CAS  PubMed  Google Scholar 

  • Londoño-Joshi AI, Oliver PG, Li Y, Lee CH, Forero-Torres A, LoBuglio AF, Buchsbaum DJ (2012) Basal-like breast cancer stem cells are sensitive to anti-DR5 mediated cytotoxicity. Breast Cancer Res Treat 133:437–445

    Article  PubMed  CAS  Google Scholar 

  • Louderbough JM, Schroeder JA (2011) Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 9:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai TT, Moon J, Song Y, Viet PQ, Van Phuc P, Lee JM, Yi T-H, Cho M, Cho SK (2012) Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett 321:144–153

    Article  CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marini C, Salani B, Massollo M, Amaro A, Esposito AI, Maria Orengo A, Capitanio S, Emionite L, Riondato M, Bottoni G (2013) Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12:3490–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44+ CD24–stem cell–like breast cancer cells in human tumors. J Clin Invest 121:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinou J-C, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massagué J (2000) How cells read TGF-β signals. Nat Rev Mol Cell Biol 1:169–178

    Article  PubMed  Google Scholar 

  • Merino D, Lok S, Visvader J, Lindeman G (2016) Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 35:1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Micchelli CA, Selva E, Mogila V, Perrimon N (2002) Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 129:843–851

    CAS  PubMed  Google Scholar 

  • Moitra K (2015) Overcoming multidrug resistance in cancer stem cells. BioMed Res Int 8:635745. https://doi.org/10.1155/2015/635745

    Google Scholar 

  • Molyneux G, Geyer FC, Magnay F-A, McCarthy A, Kendrick H, Natrajan R, MacKay A, Grigoriadis A, Tutt A, Ashworth A (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–417

    Article  CAS  PubMed  Google Scholar 

  • Moses H, Barcellos-Hoff MH (2011) TGF-β biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 3:a003277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W (2016) CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B: Biointerfaces 143:532–546

    Article  CAS  PubMed  Google Scholar 

  • Munz M, Baeuerle PA, Gires O (2009) The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 69:5627–5629

    Article  CAS  PubMed  Google Scholar 

  • Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21:3–9

    Article  CAS  PubMed  Google Scholar 

  • Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature 403:781–785

    Article  CAS  PubMed  Google Scholar 

  • Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Ojha R, Bhattacharyya S, Singh SK (2015) Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. Biores Open Access 4:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818–5824

    Article  CAS  PubMed  Google Scholar 

  • Owens TW, Naylor MJ (2013) Breast cancer stem cells. Front Physiol 4:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Padua D, Massagué J (2009) Roles of TGFβ in metastasis. Cell Res 19:89–102

    Article  CAS  PubMed  Google Scholar 

  • Pan J-X, Ding K, Wang C-Y (2012) Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer 31:178–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, Xing F, Fukuda K, Hirota S, Sugai T (2011) Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 130:387–398

    Article  CAS  PubMed  Google Scholar 

  • Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  CAS  PubMed  Google Scholar 

  • Peired AJ, Sisti A, Romagnani P (2016) Renal cancer stem cells: characterization and targeted therapies. Stem Cells Int 2016:1–12

    Google Scholar 

  • Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108:378–387

    Article  PubMed  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24−/low/CD44+ breast cancer–initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  • Pindiprolu S, Krishnamurthy P, Chintamaneni PK, Karri VVSR (2017) Nanocarrier based approaches for targeting breast cancer stem cells. Artif Cells Nanomeds Biotechnol. https://doi.org/10.1080/21691401.2017.1366337

    Google Scholar 

  • Prud'homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V, Jothy S (2010) Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS One 5:e13831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R (2009) Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development 136:1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers MH, de Grouw EP, Heuver LH, van der Reijden BA, Jansen JH, Scheper RJ, Scheffer GL, de Witte TJ, Raymakers RA (2005) Breast cancer resistance protein in drug resistance of primitive CD34+ 38− cells in acute myeloid leukemia. Clin Cancer Res 11:2436–2444

    Article  CAS  PubMed  Google Scholar 

  • Rabindran SK, He H, Singh M, Brown E, Collins KI, Annable T, Greenberger LM (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 58:5850–5858

    CAS  PubMed  Google Scholar 

  • Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50

    CAS  PubMed  Google Scholar 

  • Resetkova E, Reis-Filho JS, Jain RK, Mehta R, Thorat MA, Nakshatri H, Badve S (2010) Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res Treat 123:97–108

    Article  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W-C, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506:322–327

    Article  CAS  PubMed  Google Scholar 

  • Robey RW, Steadman K, Polgar O, Morisaki K, Blayney M, Mistry P, Bates SE (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 64:1242–1246

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Torres M, Allan AL (2016) Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 33:97–113

    Article  CAS  PubMed  Google Scholar 

  • Sabe H (2011) Cancer early dissemination: cancerous epithelial–mesenchymal transdifferentiation and transforming growth factor β signalling. J Biochem 149:633–639

    Article  CAS  PubMed  Google Scholar 

  • Salani B, Del Rio A, Marini C, Sambuceti G, Cordera R, Maggi D (2014) Metformin, cancer and glucose metabolism. Endocr Relat Cancer 21:R461–R471

    Article  PubMed  CAS  Google Scholar 

  • Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL (2014) Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci 111:E5429–E5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho P, Barneda D, Heeschen C (2016) Hallmarks of cancer stem cell metabolism. Br J Cancer 114:1305–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T, Seto M, Kohno A, Kitamura K, Itoh Y (2005) BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 82:42–47

    Article  CAS  PubMed  Google Scholar 

  • Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R, Djokovic D, Borges C, Ley EJ, Duarte A (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109:4753–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheel C, Eaton EN, Li SH-J, Chaffer CL, Reinhardt F, Kah K-J, Bell G, Guo W, Rubin J, Richardson AL (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweisguth F (2004) Regulation of notch signaling activity. Curr Biol 14:R129–R138

    Article  CAS  PubMed  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat M-L, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  CAS  PubMed  Google Scholar 

  • Shervington A, Lu C (2008) Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Investig 26:535–542

    Article  CAS  Google Scholar 

  • Signore M, Ricci-Vitiani L, De Maria R (2013) Targeting apoptosis pathways in cancer stem cells. Cancer Lett 332:374–382

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BN, Kumar D, Shankar S, Srivastava RK (2012) Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol 84:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  CAS  PubMed  Google Scholar 

  • Stahl N, Farruggella TJ, Boulton TG, Zhong Z (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Stallcup MR (2001) Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20:3014–3020

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svärd J, Henricson KH, Persson-Lek M, Rozell B, Lauth M, Bergström Å, Ericson J, Toftgård R, Teglund S (2006) Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10:187–197

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171:280–287

    Article  CAS  PubMed  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    Article  CAS  PubMed  Google Scholar 

  • Thakur R, Trivedi R, Rastogi N, Singh M, Mishra DP (2015) Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep 5:10194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Jeng J, Chuang L, Yang M, Ho M, Chang W, Hsieh M, Lin Z, Tsai J (1997) Elevated urinary transforming growth factor-beta1 level as a tumour marker and predictor of poor survival in cirrhotic hepatocellular carcinoma. Br J Cancer 76:244–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11:387–400

    Article  PubMed  CAS  Google Scholar 

  • Van der Lugt N, Domen J, Linders K, Van Roon M, Robanus-Maandag E, Te Riele H, Van der Valk M, Deschamps J, Sofroniew M, Van Lohuizen M (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8:757–769

    Article  PubMed  Google Scholar 

  • Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–193

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA (2011) The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat 126:355–364

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7:597–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvader JE (2011) Cells of origin in cancer. Nature 469:314–322

    Article  CAS  PubMed  Google Scholar 

  • Visvader JE, Rios A, Naiyang F et al (2014) The breast epithelial hierarchy and its implications for tumor heterogeneity. In Proceedings of the 105th annual meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego

  • Wang X, Wang G, Zhao Y, Liu X, Ding Q, Shi J, Ding Y, Wang S (2012) STAT3 mediates resistance of CD44+ CD24−/low breast cancer stem cells to tamoxifen in vitro. J Biomed Res 26:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG, Yan QG, Ye J, Wang JB, Guo Y (2013a) Invasive cancers are not necessarily from preformed in situ tumours—an alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med 17:921–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y-C, Chao T-K, Chang C-C, Yo Y-T, Yu M-H, Lai H-C (2013b) Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One 8:e74538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and Chemoresistance. Cell Metabolism 27:136–150. e135

    Article  CAS  PubMed  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay NV, Albarracin C, Yu D, Abbruzzese JL, Mills GB (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47:701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicha M, Dontu G, Al-Hajj M, Clarke M (2003) Stem cells in normal breast development and breast cancer. Breast Cancer Res 5:50

    Article  PubMed Central  Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890

    Article  CAS  PubMed  Google Scholar 

  • Woehlecke H, Osada H, Herrmann A, Lage H (2003) Reversal of breast cancer resistance protein–mediated drug resistance by tryprostatin A. Int J Cancer 107:721–728

    Article  CAS  PubMed  Google Scholar 

  • Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Wu PY (2009) CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev 18:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 6:926–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Y, Zuo X, Wei D (2015) Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 4:1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan N, Xu L, Wu X, Zhang L, Fei X, Cao Y, Zhang F (2017) GSKJ4, an H3K27me3 demethylase inhibitor, effectively suppresses the breast cancer stem cells. Exp Cell Res 359:405–414

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Cao L, Sun Z, Jin J, Fang H, Zhang W, Guan X (2016) Evaluation of breast cancer stem cells and intratumor stemness heterogeneity in triple-negative breast cancer as prognostic factors. Int J Biol Sci 12:1568–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Glass J (2011) The phenotypic radiation resistance of CD44+/CD24− or low breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One 6:e24080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Castagnino P, Assoian RK (2008) ABCG2 expression and side population abundance regulated by a transforming growth factor β–directed epithelial-mesenchymal transition. Cancer Res 68:800–807

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Velazquez OC, Liu Z-J (2010) Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 80:690–701

    Article  CAS  PubMed  Google Scholar 

  • Yip N, Fombon I, Liu P, Brown S, Kannappan V, Armesilla A, Xu B, Cassidy J, Darling J, Wang W (2011) Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 104:1564–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Zhao J, Wen X, Wu C, Huang Q, Guan F, Wu R, Liang D, Li C (2015) Chemoradiation therapy using cyclopamine-loaded liquid–lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J Control Release 202:40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105

    Article  CAS  PubMed  Google Scholar 

  • Zeng YA, Nusse R (2010) Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Appleton BA, Wiesmann C, Lau T, Costa M, Hannoush RN, Sidhu SS (2009) Inhibition of Wnt signaling by dishevelled PDZ peptides. Nat Chem Biol 5:217–219

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2012) The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33:679–691

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J, Semenza GL (2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci 112:E6215–E6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Smith KS, Deveau AM, Dieckhaus CM, Johnson MA, Macdonald TL, Cook JM (2002) Biological activity of the tryprostatins and their diastereomers on human carcinoma cell lines. J Med Chem 45:1559–1562

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T (2007) Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12:528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Ming J, Zhou Y, Fan L (2016) Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol 77:963–972

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Shen S, Zhou Y, Mao F, Lin Y, Guan J, Xu Y, Zhang S, Liu X, Sun Q (2016) nOTch1 is a poor prognostic factor for breast cancer and is associated with breast cancer stem cells. Onco Targets Ther 9:6865–6871

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhang X, Liu Y, Zhang S, Liu J, Ma Y, Zhang J (2012) Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo. Tumor Biol 33:1349–1362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen T. Krishnamurthy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindiprolu, S.K.S.S., Krishnamurthy, P.T. & Chintamaneni, P.K. Pharmacological targets of breast cancer stem cells: a review. Naunyn-Schmiedeberg's Arch Pharmacol 391, 463–479 (2018). https://doi.org/10.1007/s00210-018-1479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1479-3

Keywords

Navigation