Skip to main content
Log in

Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212-2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Brain monoamines are involved in many neurochemical and behavioral effects of cannabinoids, but little is known on the regulation of noradrenaline, dopamine, and serotonin (5-HT) synthesis in cannabinoid addiction. This study investigated in rat brain the chronic effects of the potent cannabinoid agonist WIN 55,212-2 and of rimonabant-precipitated withdrawal, as well as the sensitivity of synthesis-modulating inhibitory receptors, on the accumulation of l-3,4-dihydroxyphenylalanine (DOPA) and 5-HTP after decarboxylase inhibition. Acute WIN (8 mg/kg; 1 h) increased DOPA synthesis in cortex (52%), hippocampus (51%), and cerebellum (56%) and decreased DOPA accumulation in striatum (31%). Acute WIN also decreased the synthesis of 5-HTP in all brain regions (40–53%). Chronic WIN (2–8 mg/kg; 5 days) and/or antagonist-precipitated withdrawal induced tolerance to the acute effects of WIN on the accumulation of DOPA (cortex and striatum) and 5-HTP (all brain regions). The inhibitory effect of clonidine (α2-agonist; 1 mg/kg) on the accumulation of DOPA (15–41%) and 5-HTP (22–41%) was markedly decreased or abolished after chronic WIN and precipitated withdrawal, mainly in noradrenergic and serotonergic brain regions, which indicated desensitization of α2-autoreceptors and α2-heteroreceptors regulating the synthesis of noradrenaline and 5-HT. In WIN-dependent rats (chronic and withdrawal states), the effect of a low dose of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (5-HT1A agonist; 0.1 mg/kg) on the accumulation of precursor amino acids was markedly potentiated in cerebellum and striatum, indicating the induction of supersensitivity of 5-HT1A-autoreceptors and 5-HT1A-heteroreceptors that regulate the synthesis of 5-HT, noradrenaline, and dopamine in these brain regions. These chronic adaptations in presynaptic receptor function could play a relevant role in cannabinoid addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aceto MD, Scates SM, Martin BB (2001) Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212-2. Eur J Pharmacol 416:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  PubMed  CAS  Google Scholar 

  • Bortolozzi A, Amargós-Bosch M, Toth M, Artigas F, Adell A (2004) In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem 88:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Bücheler MM, Hadamek K, Hein L (2002) Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C) inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819–826

    Article  PubMed  Google Scholar 

  • Cadogan AK, Alexander SP, Boyd EA, Kendall DA (1997) Influence of cannabinoids on electrically evoked dopamine release and cyclic AMP generation in the rat striatum. J Neurochem 69:1131–1137

    PubMed  CAS  Google Scholar 

  • Carlsson A, Davis JN, Kehr W, Lindqvist M, Atack CV (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedeberg’s Arch Pharmacol 275:153–168

    Article  CAS  Google Scholar 

  • Castañé A, Maldonado R, Valverde O (2004) Role of different brain structures in the behavioural expression of WIN 55,212-2 withdrawal in mice. Br J Pharmacol 142:1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Cheer JF, Kendall DA, Mason R, Marsden CA (2003) Differential cannabinoid-induced electrophysiological effects in rat ventral tegmentum. Neuropharmacology 44:633–641

    Article  PubMed  CAS  Google Scholar 

  • Degroot A, Nomikos GG (2007) In vivo neurochemical effects induced by changes in endocannabinoid neurotransmission. Curr Op Pharmacol 7:62–68

    Article  CAS  Google Scholar 

  • Egashira N, Mishima K, Katsurabayashi S, Yoshitake T, Matsumoto Y, Ishida J, Yamaguchi M, Iwasaki K, Fujiwara M (2002) Involvement of 5-hydroxytryptamine neuronal system in delta(9)-tetrahydrocannabinol-induced impairment of spatial memory. Eur J Pharmacol 445:221–229

    Article  PubMed  CAS  Google Scholar 

  • Egashira N, Matsuda T, Koushi E, Mishima K, Iwasaki K, Shoyama Y, Fujiwara M (2006) Involvement of 5-hydroxytryptamine 1A receptors in Delta(9)-tetrahydrocannabinol-induced catalepsy-like immobilization in mice. Eur J Pharmacol 550:117–122

    Article  PubMed  CAS  Google Scholar 

  • Esteban S, Lladó J, García-Sevilla JA (1996) α2-Autoreceptors and α2-heteroreceptors modulating tyrosine and tryptophan hydroxylase activity in the rat brain in vivo: an investigation into the α2-adrenoceptor subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 353:391–399

    CAS  Google Scholar 

  • Esteban S, Lladó J, Sastre-Coll A, García-Sevilla JA (1999) Activation and desensensitization by cyclic antidepressant drugs of α2-heteroreceptors and 5-HT1A autoreceptors regulating monoamine synthesis in the rat brain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 360:135–143

    Article  CAS  Google Scholar 

  • Esteban S, Moranta D, Sastre-Coll A, Miralles A, García-Sevilla JA (2002) Withdrawal from chronic ethanol increases the sensitivity of presynaptic 5-HT1A receptors modulating seroronine and dopamine synthesis in rat brain in vivo. Neurosci Lett 326:121–124

    Article  PubMed  CAS  Google Scholar 

  • Esteban S, Moranta D, García-Sevilla JA (2007) Cambios en la sensibilidad de adrenoceptores α2A y receptores 5-HT1A inducidos por el tratamiento crónico con el agonista cannabinoide CB1/CB2 WIN 55,212-2 en cerebro de rata. Spanish Society for Neuroscience, XII Congress, Valencia, Abstract book, p 97

  • Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417

    PubMed  CAS  Google Scholar 

  • Gerdeman G, Lovinger DM (2001) CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468–471

    PubMed  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318

    Article  PubMed  CAS  Google Scholar 

  • Gorriti MA, Rodríguez de Fonseca F, Navarro M, Palomo T (1999) Chronic (−)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol 365:133–142

    Article  PubMed  CAS  Google Scholar 

  • Häring M, Marsicano G, Lutz B, Monory K (2007) Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience 146:1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Harsing LG, Vizi ES (1991) α2-Adrenoceptors are not involved in the regulation of striatal glutamate release: Comparison to dopaminergic inhibition. J Neurosci Res 28:376–381

    Article  PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de-Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hutcheson DM, Tzavara ET, Smadja C, Valjent E, Roques BP, Hanoune J, Maldonado R (1998) Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with delta-9-tetrahydrocannabinol. Br J Pharmacol 125:1567–1577

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (2000) The effect of serotonin1A receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res 858:252–263

    Article  PubMed  CAS  Google Scholar 

  • Inui K, Egashira N, Mishima K, Yano A, Matsumoto Y, Hasebe N, Abe K, Hayakawa K, Ikeda T, Iwasaki K, Fujiwara M (2004) The serotonin1A receptor agonist 8-OHDPAT reverses delta 9-tetrahydrocannabinol-induced impairment of spatial memory and reduction of acetylcholine release in the dorsal hippocampus in rats. Neurotox Res 6:153–158

    PubMed  Google Scholar 

  • Janoyan JJ, Crim JL, Darmani NA (2002) Reversal of SR 141716A-induced head-twitch and ear-scratch responses in mice by delta 9-THC and other cannabinoids. Pharmacol Biochem Behav 71:155–162

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Andrusiak E, Tran A, Bowers MB, Roth RH (1997) Delta 9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16:426–432

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, Tsai CE, Shahan YH, Azzaro AJ (1993) Serotonin 5-HT1A receptors mediate inhibition of tyrosine hydroxylation in rat striatum. J Pharmacol Exp Ther 266:133–141

    PubMed  CAS  Google Scholar 

  • Kathmann M, Bauer U, Schlicker E, Göthert M (1999) Cannabinoid CB1 receptor-mediated inhibition of NMDA- and kainate-stimulated noradrenaline and dopamine release in the brain. Naunyn-Schmiedeberg’s Arch Pharmacol 359:466–470

    Article  CAS  Google Scholar 

  • Katona I, Sperlágh B, Sík A, Köfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  CAS  Google Scholar 

  • Kawahara Y, Kawahara H, Westerink BH (1999) Tonic regulation of the activity of noradrenergic neurons in the locus coeruleus of the conscious rat studied by dual-probe microdialysis. Brain Res 823:42–48

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Gorny G, Limebeer CL, Parker LA (2006) Chronic treatment with Δ9-tetrahydrocannabinol alters the structure of neurons in the nucleus accumbens shell and medial prefrontal cortex. Synapse 60:429–436

    Article  PubMed  CAS  Google Scholar 

  • Lanfumey L, Hamon M (2000) Central 5-HT1A receptors: Regional distribution and functional characteristics. Nucl Med Biol 27:429–435

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1991) Cannabinoid-induced antinociception is mediated by a spinal alpha2-noradrenergic mechanism. Brain Res 559:309–314

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (2005) Cannabinoid tolerance and dependence. In: Pertwee R (ed) Cannabinoids Hdbk Exp Pharmacol 168. Springer, New York, pp 691–717

    Google Scholar 

  • Liu R-J, Lambe EK, Aghajanian GK (2005) Somatodendritic autoreceptor regulation of serotonergic neurons: dependence on L-tryptophan and tryptophan hydroxylase-activating kinases. Eur J Neurosci 21:945–958

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Rodríguez de Fonseca F (2002) Cannabinoid addiction: behavioral models and neural correlates. J Neurosci 22:3326–3331

    PubMed  CAS  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29:225–232

    Article  PubMed  CAS  Google Scholar 

  • Malone DT, Taylor DA (1999) Modulation by fluoxetine of striatal dopamine release following delta(9)-tetrahydrocannabinol: a microdialysis study in conscious rats. Br J Pharmacol 128:21–26

    Article  PubMed  CAS  Google Scholar 

  • Malone DT, Taylor DA (2001) Involvement of somatodendritic 5-HT(1A) receptors in delta(9)-tetrahydrocannabinol-induced hypothermia in the rat. Pharmacol Biochem Behav 69:595–601

    Article  PubMed  CAS  Google Scholar 

  • Marco EM, Pérez-Álvarez L, Borcel E, Rubio M, Guaza C, Ambrosio E, File SE, Viveros MP (2004) Involvement of 5-HT1A receptors in behavioural effects of the cannabinoid receptor agonist CP 55,940 in male rats. Behav Pharmacol 15:21–27

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2004) Cannabinoid enhance N-methyl-D-aspartate-induced excitation of locus coeruleus by CB1 receptors in rat brain slices. Neurosci Lett 363:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2006) Systemic effect of cannabinoids on the spontaneous firing rate of locus coeruleus neurons in rats. Eur J Pharmacol 534:83–88

    Article  PubMed  CAS  Google Scholar 

  • Moranta D, Esteban S, García-Sevilla JA (2004) Differential effects of acute cannabinoid drug treatment, mediated by CB1 receptors, on the in vivo activity of tyrosine amd tryptophan hydroxilase in the rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 369:516–524

    Article  CAS  Google Scholar 

  • Moranta D, Esteban S, García-Sevilla JA (2007) Acute, chronic and withdrawal effects of the cannabinoid receptor agonist WIN55212-2 on the sequential activation of MAPK/Raf-MEK-ERK signaling in the rat cerebral frontal cortex: short-term regulation by intrinsic and extrinsic pathways. J Neurosci Res 85:656–667

    Article  PubMed  CAS  Google Scholar 

  • Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M (2006) Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci 23:2385–2394

    Article  PubMed  Google Scholar 

  • Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E (2000) Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 361:19–24

    Article  CAS  Google Scholar 

  • Nissbrandt H, Engberg G, Wilkström M, Magnusson T, Carlsson A (1988) NSD 1034: an amino acid decarboxylase inhibitor with a stimulatory action on dopamine synthesis not mediated by classical dopamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 338:148–161

    Article  CAS  Google Scholar 

  • Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046:45–54

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ (2007) Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav 86:162–168

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Oropeza VC, Van Bockstaele EJ (2008) Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex. Neurosci Lett 431:1–5

    Article  PubMed  CAS  Google Scholar 

  • Parolaro D, Viganò D, Rubino T (2005) Endocannabinoids and drug dependence. Curr Drug Targets CNS Neurol Disord 4:643–655

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    Article  PubMed  CAS  Google Scholar 

  • Pi F, García-Sevilla JA (1992) α2-Autoreceptor-mediated modulation of tyrosine hydroxylase activity in noradrenergic regions of the rat brain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 345:653–660

    Article  CAS  Google Scholar 

  • Sagredo O, Ramos JA, Fernandez-Ruiz J, Rodriguez ML, de Miguel R (2006) Chronic delta(9)-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 372:313–317

    Article  CAS  Google Scholar 

  • Sano K, Mishima K, Koushi E, Orito K, Egashira N, Irie K, Takasaki K, Katsurabayashi S, Iwasaki K, Uchida N, Egawa T, Kitamura Y, Nishimura R, Fujiwara M (2008) Δ9-Tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience 151:320–328

    Article  PubMed  CAS  Google Scholar 

  • Sastre-Coll A, Esteban S, García-Sevilla JA (1999) Effects of imidazoline receptor ligands on monoamine synthesis in the rat brain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 360:50–62

    Article  CAS  Google Scholar 

  • Sastre-Coll A, Esteban S, García-Sevilla JA (2002) Supersensitivity of 5-HT1A-autoreceptors and α2-adrenoceptors regulating monoamine synthesis in the brain of morphine-dependent rats. Naunyn-Schmiedeberg’s Arch Pharmacol 365:210–219

    Article  CAS  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  PubMed  CAS  Google Scholar 

  • Schlicker E, Timm J, Zentner J, Göthert M (1997) Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 356:583–589

    Article  CAS  Google Scholar 

  • Sim-Selley LJ (2003) Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 15:91–119

    Article  PubMed  CAS  Google Scholar 

  • Sim-Selley LJ, Schechter NS, Rorrer WK, Dalton GD, Hernandez J, Martin BR, Selley DE (2006) Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 70:986–996

    Article  PubMed  CAS  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade: focus on α2-adrenoceptors. J Neurochem 78:685–693

    Article  PubMed  CAS  Google Scholar 

  • Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Tanda G, Goldberg SR (2003) Cannabinoids: reward, dependence, and underlying mechanisms—a review of recent preclinica data. Psychopharmacology 169:115–134

    Article  PubMed  CAS  Google Scholar 

  • Touriño C, Maldonado R, Valverde O (2007) MDMA attenuates THC withdrawal syndrome in mice. Psychopharmacology 193:75–84

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg AU, Starke K, Limberger N (1994) Presynaptic alpha 2A-adrenoceptors inhibit the release of endogenous dopamine in rabbit caudate nucleus slices. Naunyn-Schmiedeberg’s Arch Pharmacol 350:473–481

    Article  CAS  Google Scholar 

  • Trendelenburg AU, Cox SL, Schelb V, Klebroff W, Khairallah L, Starke K (2000) Modulation of (3)H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and beta-adrenoceptors in mouse tissues. Br J Pharmacol 130:321–330

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Perry KW, Rodriguez DE, Bymaster FP, Nomikos GG (2001) The cannabinoid CB(1) receptor antagonist SR141716A increases norepinephrine outflow in the rat anterior hypothalamus. Eur J Pharmacol 426:R3–R4

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 138:544–553

    Article  PubMed  CAS  Google Scholar 

  • Valverde O (2005) Participation of the cannabionid system in the regulation of emotional-like behaviour. Curr Pharm Des 11:3421–3429

    Article  PubMed  CAS  Google Scholar 

  • Valverde O, Maldonado R, Valjent F, Zimmer AM, Zimmer A (2000) Cannabinoid withdrawal syndrome is reduced in pre-proenkephalin knock-out mice. J Neurosci 20:9284–9289

    PubMed  CAS  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    Article  PubMed  CAS  Google Scholar 

  • Wotjak CT (2005) Role of endogenous cannabinoids in cognition and emotionality. Mini Rev Med Chem 5:659–670

    Article  PubMed  CAS  Google Scholar 

  • Wu D-F, Yang L-Q, Gorschke A, Stumm R, Brandenburg L-O, Liang Y-J, Höllt V, Koch T (2008) Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J Neurochem 104:1132–1143

    Article  PubMed  CAS  Google Scholar 

  • Yavich L, Sirviö J, Haapalinna A, Ylinen A, Männistö PT (2003) Atipamezole, an α2-adrenoceptor antagonist, augments the effects of L-DOPA on evoked dopamine release in rat striatum. Eur J Pharmacol 462:83–89

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants SAF2004-03685 and SAF2008-01311 (Programa Nacional de Biomedicina, MEC and FEDER, Madrid, Spain), FIS PI05-0353 (Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, MSC, Madrid, Spain), and Delegación del Gobierno para el Plan Nacional sobre Drogas (project 2007/032, MSC, Madrid, Spain). The research was also funded in part by Red Temática de Investigación Cooperativa en Salud (RETICS, Instituto de Salud Carlos III, MSC, Madrid): Red de Trastornos Adictivos, Grupo RD06/001/003. D.M. was supported by a predoctoral fellowship from MEC (Madrid, Spain). The authors thank Sanofi-Synthélabo (Montpellier, France) for the gift of SR141716A (rimonabant). J.A.G.-S. is a member of the Institut d’Estudis Catalans (Barcelona, Catalonia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. García-Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moranta, D., Esteban, S. & García-Sevilla, J.A. Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212-2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. Naunyn-Schmied Arch Pharmacol 379, 61–72 (2009). https://doi.org/10.1007/s00210-008-0337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0337-0

Keywords

Navigation