Skip to main content
Log in

A family of singular integral operators which control the Cauchy transform

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the behaviour of singular integral operators \(T_{k_t}\) of convolution type on \({\mathbb {C}}\) associated with the parametric kernels

$$\begin{aligned} k_t(z):=\frac{({\textsf {Re}\,}z)^{3}}{|z|^{4}}+t\cdot \frac{{\textsf {Re}\,}z}{|z|^{2}}, \quad t\in {\mathbb {R}},\qquad k_\infty (z):=\frac{{\textsf {Re}\,}z}{|z|^{2}}\equiv {\textsf {Re}\,}\frac{1}{z},\quad z\in {\mathbb {C}}{\setminus }\{0\}. \end{aligned}$$

It is shown that for any positive locally finite Borel measure with linear growth the corresponding \(L^2\)-norm of \(T_{k_0}\) controls the \(L^2\)-norm of \(T_{k_\infty }\) and thus of the Cauchy transform. As a corollary, we prove that the \(L^2({\mathcal {H}}^1\lfloor E)\)-boundedness of \(T_{k_t}\) with a fixed \(t\in (-t_0,0)\), where \(t_0>0\) is an absolute constant, implies that E is rectifiable. This is so in spite of the fact that the usual curvature method fails to be applicable in this case. Moreover, as a corollary of our techniques, we provide an alternative and simpler proof of the bi-Lipschitz invariance of the \(L^2\)-boundedness of the Cauchy transform, which is the key ingredient for the bilipschitz invariance of analytic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that there is an inaccuracy with constants in the original Lemma 2.4 in [1].

References

  1. Azzam, J., Tolsa, X.: Characterization of \(n\)-rectifiability in terms of Jones’ square function: part II. Geom. Funct. Anal. 25(5), 1371–1412 (2015)

    Article  MathSciNet  Google Scholar 

  2. Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 74, 1324–1327 (1977)

    Article  MathSciNet  Google Scholar 

  3. Chousionis, V., Prat, L.: Some Calderón–Zygmund kernels and their relation to rectifiability and Wolff capacities. Math. Z. 231(1–2), 435–460 (2016)

    Article  Google Scholar 

  4. Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Calderón-Zygmund kernels and rectifiability in the plane. Adv. Math. 231(1), 535–568 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Capacities associated with Calderón–Zygmund kernels. Potential Anal. 38(3), 913–949 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chunaev, P.: A new family of singular integral operators whose \(L^2\)-boundedness implies rectifiability. J. Geom. Anal. 27(4), 2725–2757 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chunaev, P., Mateu, J., Tolsa, X.: Singular integrals unsuitable for the curvature method whose \(L^2\)-boundedness still implies rectifiability. J. Anal. Math. (2016) arXiv:1607.07663 (accepted for publication)

  8. Coifman, R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur \(L^{2}\) pour les courbes lipschitziennes. Ann. Math. (2) 116(2), 361–387 (1982)

    Article  MathSciNet  Google Scholar 

  9. David, G.: Opérateurs intégraux singuliers sur certaines courbes du plan complexe. Ann. Sci. École Norm. Sup. (4) 17(1), 157–189 (1984)

    Article  MathSciNet  Google Scholar 

  10. David, G., Mattila, P.: Removable sets for Lipschitz harmonic functions in the plane. Rev. Mat. Iberoam. 16(1), 137–215 (2000)

    Article  MathSciNet  Google Scholar 

  11. David, G., Semmes, S.: Singular integrals and rectifiable sets in \({\mathbb{R}}^n\): Beyond Lipschitz graphs. Astérisque 193 (1991)

  12. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

  13. David, G., Toro, T.: Reifenberg parameterizations for sets with holes. Mem. Am. Math. Soc. 215, 1012 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Girela-Sarrión, D.: Geometric conditions for the \(L^2\)-boundedness of singular integral operators with odd kernels with respect to measures with polynomial growth in \({\mathbb{R}}^d\). arXiv:1505.07264v2 (2015)

  15. Huovinen, P.: A nicely behaved singular integral on a purely unrectifiable set. Proc. Am. Math. Soc. 129(11), 3345–3351 (2001)

    Article  MathSciNet  Google Scholar 

  16. Jaye, B., Nazarov, F.: Three revolutions in the kernel are worse than one. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnx101. arXiv:1307.3678 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1–15 (1990)

    Article  MathSciNet  Google Scholar 

  18. Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)

    Article  MathSciNet  Google Scholar 

  19. Mattila, P., Melnikov, M.S., Verdera, J.: The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. Math. (2) 144, 127–136 (1996)

    Article  MathSciNet  Google Scholar 

  20. Melnikov, M.S.: Analytic capacity: discrete approach and curvature of a measure. Sbornik: Mathematics 186(6), 827–846 (1995)

    Article  MathSciNet  Google Scholar 

  21. Melnikov, M.S., Verdera, J.: A geometric proof of the \(L^2\) boundedness of the Cauchy integral on Lipschitz graphs. Int. Math. Res. Not., 325–331 (1995)

  22. Tolsa, X.: \(L^2\)-boundedness of the Cauchy transform implies \(L^2\)-boundedness of all Calderón–Zygmund operators associated to odd kernels. Publ. Mat. 48(2), 445–479 (2004)

    Article  MathSciNet  Google Scholar 

  23. Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. Math. 162(3), 1241–1302 (2005)

    Article  MathSciNet  Google Scholar 

  24. Tolsa, X.: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory, Progress in Mathematics, vol. 307. Birkhäuser/Springer, Cham (2014)

    Book  Google Scholar 

  25. Tolsa, X.: Rectifiable measures, square functions involving densities, and the Cauchy transform. Mem. Am. Math. Soc. 245, 1158 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Tuomas Orponen for valuable comments on the first version of the paper. P.C. and X.T. were supported by the ERC Grant 320501 of the European Research Council (FP7/2007-2013). X.T. was also partially supported by MTM-2016-77635-P. J.M. was supported by MTM2013-44699 (MINECO) and MTM2016-75390 (MINECO). J.M. and X.T. were also supported by MDM-2014-044 (MICINN, Spain), Marie Curie ITN MAnET (FP7-607647) and 2017-SGR-395 (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Tolsa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chunaev, P., Mateu, J. & Tolsa, X. A family of singular integral operators which control the Cauchy transform. Math. Z. 294, 1283–1340 (2020). https://doi.org/10.1007/s00209-019-02332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02332-7

Keywords

Mathematics Subject Classification

Navigation