Skip to main content
Log in

Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we give a characterization of the crystal bases \(\mathcal {B}_{x}^{+}(\lambda )\), \(x \in W_{\mathrm {af}}\), of Demazure submodules \(V_{x}^{+}(\lambda )\), \(x \in W_{\mathrm {af}}\), of a level-zero extremal weight module \(V(\lambda )\) over a quantum affine algebra \(U_{q}\), where \(\lambda \) is an arbitrary level-zero dominant integral weight, and \(W_{\mathrm {af}}\) denotes the affine Weyl group. This characterization is given in terms of the initial direction of a semi-infinite Lakshmibai–Seshadri path, and is established under a suitably normalized isomorphism between the crystal basis \(\mathcal {B}(\lambda )\) of the level-zero extremal weight module \(V(\lambda )\) and the crystal \({\mathbb {B}}^{\frac{\infty }{2}}(\lambda )\) of semi-infinite Lakshmibai–Seshadri paths of shape \(\lambda \), which is obtained in our previous work. As an application, we obtain a formula expressing the graded character of the Demazure submodule \(V_{w_0}^{+}(\lambda )\) in terms of the specialization at \(t=0\) of the symmetric Macdonald polynomial \(P_{\lambda }(x\,;\,q,\,t)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33, 839–867 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, J., Nakajima, H.: Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123, 335–402 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Björner, A., Brenti, F.: “Combinatorics of Coxeter Groups”, Graduate Texts in Mathematics Vol. 231. Springer, New York (2005)

    MATH  Google Scholar 

  4. Braverman, A., Finkelberg, M.: Weyl modules and \(q\)-Whittaker functions. Math. Ann. 359, 45–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fulton, W.: “Young tableaux: With Applications to Representation Theory and Geometry”, London Mathematical Society Student Texts Vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  6. Hong, J., Kang, S.-J.: “Introduction to Quantum Groups and Crystal Bases”, Graduate Studies in Mathematics Vol. 42. American Mathametical Society, Providence, RI (2002)

    Google Scholar 

  7. Ishii, M., Naito, S., Sagaki, D.: Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras. Adv. Math. 290, 967–1009 (2016)

  8. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge, UK (1990)

    Book  MATH  Google Scholar 

  9. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69, 455–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71, 839–858 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73, 383–413 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwara, M.: On crystal bases. In: Allison, B.N., Cliff, G.H. (eds.) Representations of Groups. CMS Conf. Proc. Vol. 16, pp. 155–197. American Mathametical Society, Providence, RI (1995)

  13. Kashiwara, M.: “Bases Cristallines des Groupes Quantiques” (Notesby Charles Cochet), Cours Spécialisés vol. 9, Société Mathématique de France, Paris (2002)

  14. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112, 117–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kashiwara, M.: Level zero fundamental representations over quantized affine algebras and Demazure modules. Publ. Res. Inst. Math. Sci. 41, 223–250 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lam, T., Shimozono, M.: Quantum cohomology of \(G/P\) and homology of affine Grassmannian. Acta Math. 204, 49–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals I: lifting the parabolic quantum Bruhat graph. Int. Math. Res. Not. 2015, 1848–1901 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals II: Alcove model, path model, and \(P=X\), preprint 2014. arXiv:1402.2203

  19. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals III: Nonsymmetric Macdonald polynomials at \(t=0\) and Demazure characters, preprint 2015, arXiv:1511.00465

  20. Littelmann, P.: A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math. 116, 329–346 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Littelmann, P.: Paths and root operators in representation theory. Ann. of Math. 142(2), 499–525 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Naito, S., Sagaki, D.: Crystal of Lakshmibai–Seshadri paths associated to an integral weight of level zero for an affine Lie algebra. Int. Math. Res. Not. 2005(14), 815–840 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naito, S., Sagaki, D.: Path model for a level-zero extremal weight module over a quantum affine algebra. II. Adv. Math. 200, 102–124 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naito, S., Sagaki, D.: Lakshmibai–Seshadri paths of a level-zero weight shape and one-dimensional sums associated to level-zero fundamental representations. Compos. Math. 144, 1525–1556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peterson, D.: Quantum Cohomology of \(G/P\), Lecture Notes. Spring: Massachusetts Institute of Technology, Cambridge, MA (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Sagaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naito, S., Sagaki, D. Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials. Math. Z. 283, 937–978 (2016). https://doi.org/10.1007/s00209-016-1628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1628-7

Mathematics Subject Classification

Navigation