Skip to main content
Log in

Castelnuovo–Mumford regularity bounds for singular surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove the regularity conjecture, namely Eisenbud–Goto conjecture, for a normal surface with rational, Gorenstein elliptic and log canonical singularities. Along the way, we bound the regularity for a dimension zero scheme by its Loewy length and for a curve allowing embedded or isolated point components by its arithmetic degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayer, D., Mumford, D.: What can be computed in algebraic geometry?. In: Computational algebraic geometry and commutative algebra (Cortona, 1991), Symposium Mathematical XXXIV, pp. 1–48. Cambridge University Press, Cambridge (1993)

  2. Eisenbud, D., Goto, S.: Linear free resolutions and minimal multiplicity. J. Algebra 88(1), 89–133 (1984)

    Article  MathSciNet  Google Scholar 

  3. Giaimo, D.: On the Castelnuovo–Mumford regularity of connected curves. Trans. Am. Math. Soc. 358(1), 267–284 (2006). (Electronic)

    Article  MathSciNet  Google Scholar 

  4. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994). Reprint of the 1978 original

    Book  Google Scholar 

  5. Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo, and the equations defining space curves. Invent. Math. 72(3), 491–506 (1983)

    Article  MathSciNet  Google Scholar 

  6. Hartshorne, R.: Connectedness of the Hilbert scheme. Inst. Ht. Études Sci. Publ. Math. 29, 5–48 (1966)

    MathSciNet  Google Scholar 

  7. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, vol. 134. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge. With the collaboration of Clemens C.H., Corti A., Translated from the 1998 Japanese original (1998)

  8. Kwak, S.: Castelnuovo regularity for smooth subvarieties of dimensions 3 and 4. J. Algebr. Geom. 7(1), 195–206 (1998)

    MathSciNet  Google Scholar 

  9. Kwak, S.: Generic projections, the equations defining projective varieties and Castelnuovo regularity. Math. Z 234(3), 413–434 (2000)

    Article  MathSciNet  Google Scholar 

  10. Lazarsfeld, R.: A sharp Castelnuovo bound for smooth surfaces. Duke Math. J. 55(2), 423–429 (1987)

    Article  MathSciNet  Google Scholar 

  11. Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Berlin (2004)

  12. Matsuki, K.: Introduction to the Mori Program. Universitext. Springer, New York (2002)

    Book  Google Scholar 

  13. Moishezon, B.: Complex surfaces and connected sums of complex projective planes. Lecture Notes in Mathematics, vol. 603. Springer, New York, With an appendix by Livne R. (1977)

  14. Pinkham, H.C.: A Castelnuovo bound for smooth surfaces. Invent. Math. 83(2), 321–332 (1986)

    Article  MathSciNet  Google Scholar 

  15. Reid, M.: Chapters on algebraic surfaces. In Complex Algebraic Geometry (Park City, 1993), vol. 3 of IAS/Park City Mathematics Series, pp. 3–159. American Mathematical Society, Providence, RI (1997)

Download references

Acknowledgments

Special thanks are due to professor Lawrence Ein for his generous help and encouragement. The author’s thanks also go to the referees for their nice comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, W. Castelnuovo–Mumford regularity bounds for singular surfaces. Math. Z. 280, 609–620 (2015). https://doi.org/10.1007/s00209-015-1439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1439-2

Keywords

Mathematics Subject Classification

Navigation