Skip to main content
Log in

Torsion homology of arithmetic lattices and \(K_2\) of imaginary fields

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(X = G/K\) be a symmetric space of noncompact type. A result of Gelander provides exponential upper bounds in terms of the volume for the torsion homology of the noncompact arithmetic locally symmetric spaces \(\Gamma \backslash X\). We show that under suitable assumptions on \(X\) this result can be extended to the case of nonuniform arithmetic lattices \(\Gamma \subset G\) that may contain torsion. Using recent work of Calegari and Venkatesh we deduce from this upper bounds (in terms of the discriminant) for \(K_2\) of the ring of integers of totally imaginary number fields \(F\). More generally, we obtain such bounds for rings of \(S\)-integers in \(F\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belabas, K., Gangl, H.: Generators and relations for \(K_2 O_F\). J. K-Theory 31(3), 195–231 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bergeron, N., Venkatesh, A.: The asymptotic growth of torsion homology for arithmetic groups. J. Inst. Math. Jussieu 12(2), 391–447 (2013)

    Google Scholar 

  3. Borel, A.: Commensurability classes and volumes of hyperbolic 3-manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 8(1), 1–33 (1981)

    MATH  MathSciNet  Google Scholar 

  4. Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Math. Surveys Monogr., vol. 67, American Mathematical Society (2000)

  5. Borel, A., Yang, J.: The rank conjecture for number fields. Math. Res. Lett. 1, 689–699 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brown, K.S.: Cohomology of groups, Graduate texts in mathematics, vol. 87. Springer, Berlin (1982)

    Google Scholar 

  7. Calegari, F., Venkatesh, A.: A torsion Jacquet-Langlands correspondence, preprint arXiv:1212.3847v1

  8. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, vol. 11. Wiley, NY (1962)

    Google Scholar 

  9. Gelander, Tsachik: Homotopy type and volume of locally symmetric manifolds. Duke Math. J. 124(3), 459–515 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Houriet, J.: Arithmetic bounds—Lenstra’s constant and torsion of \(K\)-groups. Ph.D. thesis, EPF Lausanne (2010)

  11. Samet, I.: Betti numbers of finite volume orbifolds. Geom. Topol. 17(2), 1113–1147 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Serre, J.-P.: Cohomologie des groupes discrets. Prospects in mathematics. Ann. Math. Stud., vol. 70. Princeton Universtiy Press, pp. 77–169 (1971)

  13. Serre, J.-P.: Trees, Springer (1980)

  14. Soulé, C.: Groupes de Chow et \(K\)-théorie de variétés sur un corps fini. Math. Ann. 268, 317–346 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Soulé, C.: Perfect forms and the Vandiver conjecture. J. Reine Angew. Math. 517, 209–221 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Soulé, C.: A bound for the torsion in the \(K\)-theory of algebraic integers. Doc. Math. Extra, vol. Kato, pp. 761–788 (2003)

  17. Weibel, C.: Algebraic \(K\)-theory of rings of integers in local and global fields. In: Friedlander, E.M., Grayson, D.R. (eds.) Handbook of \(K\)-theory, vol. 1. Springer (2005)

Download references

Acknowledgments

I would like to thank Akshay Venkatesh for his help and encouragement, and Mike Lipnowski, Jean Raimbault and Misha Belolipetsky for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Emery.

Additional information

Supported by Swiss National Science Foundation, Projects number PA00P2-139672 and PZ00P2-148100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emery, V. Torsion homology of arithmetic lattices and \(K_2\) of imaginary fields. Math. Z. 277, 1155–1164 (2014). https://doi.org/10.1007/s00209-014-1298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1298-2

Keywords

Navigation