Skip to main content

Advertisement

Log in

Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the generalized Gagliardo–Nirenberg inequality in \({\mathbb{R}}^n\) in the homogeneous Sobolev space \(\dot{H}^{s, r}({\mathbb{R}}^n)\) with the critical differential order s = n/r, which describes the embedding such as \(L^p({\mathbb{R}}^n) \cap \dot{H}^{n/r,r}({\mathbb{R}}^n) \subset L^q({\mathbb{R}}^n)\) for all q with pq < ∞, where 1 < p < ∞ and 1 < r < ∞. We establish the optimal growth rate as q → ∞ of this embedding constant. In particular, we realize the limiting end-point r = ∞ as the space of BMO in such a way that \(||u||_{L^{q}({\mathbb{R}}^n)} \leqq C_n q||u||_{L^{p}({\mathbb{R}}^n)}^{\frac{p}{q}}||u||_{BMO}^{1-\frac{p}{q}}\) with the constant C n depending only on n. As an application, we make it clear that the well known John–Nirenberg inequality is a consequence of our estimate. Furthermore, it is clarified that the L -bound is established by means of the BMO-norm and the logarithm of the \(\dot{H}^{s, r}\) -norm with s > n/r, which may be regarded as a generalization of the Brezis–Gallouet–Wainger inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi S. and Tanaka K. (1999). A scale-invariant form of Trudinger–Moser inequality and its best exponent. Proc. Am. Math. Soc. 1102: 148–153

    MATH  MathSciNet  Google Scholar 

  2. Adams D.R. (1988). A sharp inequality of J.Moser for higher order derivatives. Ann. Math. 128: 385–398

    Article  Google Scholar 

  3. Bendikov A. (1994). Asymptotic formulas for symmetric stable semigroups. Exposition. Math. 12: 381–384

    MATH  MathSciNet  Google Scholar 

  4. Bennett C. and Sharpley R. (1988). Interpolation of Operators. Academic, New York

    MATH  Google Scholar 

  5. Brezis H. and Wainger S. (1980). A note on limiting cases of Sobolev embeddings. Commun. Partial Differ. Equat. 5: 773–789

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen J. and Zhu X. (2005). A note on BMO and its application. Math. J. Anal. Appl. 303: 696–698

    Article  MATH  MathSciNet  Google Scholar 

  7. Engler H. (1989). An alternative proof of the Brezis–Wainger inequality. Comm. Partial Differ. Equat. 14: 541–544

    MATH  MathSciNet  Google Scholar 

  8. Jacob N. (2001). Pseudo Differential Operators and Markov Processes. Imperial College Press, London

    MATH  Google Scholar 

  9. Kozono H., Ogawa T. and Taniuchi Y. (2002). The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242: 251–278

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozono H., Sato T. and Wadade H. (2006). Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality. Indiana Univ. Math. J. 55: 1951–1974

    Article  MATH  MathSciNet  Google Scholar 

  11. Kozono H. and Taniuchi Y. (2000). Limiting case of the Sobolev inequality in BMO with application to the Euler equations. Commun. Math. Phys. 214: 191–200

    Article  MATH  MathSciNet  Google Scholar 

  12. Meyer Y. and Riviere T. (2003). A partial regularity result for a class of stationary Yang–Mills fields in high dimension. Rev. Mat. Iberoamericana 19: 195–219

    MATH  MathSciNet  Google Scholar 

  13. Moser J. (1971). A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20: 1077–1092

    Article  Google Scholar 

  14. Ogawa T. (1990). A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equation. Nonlinear Anal. 14: 765–769

    Article  MATH  MathSciNet  Google Scholar 

  15. Ogawa T. and Ozawa T. (1991). Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem. J. Math. Anal. Appl. 155: 531–540

    Article  MATH  MathSciNet  Google Scholar 

  16. Ozawa T. (1995). On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127: 259–269

    Article  MATH  MathSciNet  Google Scholar 

  17. Stein E.M. and Weiss G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton

    MATH  Google Scholar 

  18. Trudinger N.S. (1967). On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17: 473–483

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kozono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozono, H., Wadade, H. Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008). https://doi.org/10.1007/s00209-007-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0258-5

Mathematics Subject Classification (2000)

Navigation