Skip to main content
Log in

Kernels of L-functions of cusp forms

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give a new expression for the inner product of two kernel functions associated to a cusp form. Among other applications, it yields an extension of a formula of Kohnen and Zagier, and another proof of Manin’s Periods Theorem. Cohen’s representation of these kernels as series is also generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoniadis J.A.: Modulformen auf Γ0(N) mit rationalen Perioden. Manuscripta Math. 74(4), 359–384 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Elstrodt J., Grunewald F.: The Petersson scalar product. Jahresber. Deutsch. Math.-Verein. 100(4), 253–283 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Fukuhara S.: Explicit formulas for Hecke operators on cusp forms. Dedekind symbols and period polynomials. J. Reine Angew. Math. 607, 163–216 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Fukuhara S., Yang Y.: Period polynomials and explicit formulas for Hecke operators on Γ0(2). Math. Proc. Cambridge Philos. Soc. 146(2), 321–350 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldfeld D., Zhang S.: The holomorphic kernel of the Rankin-Selberg convolution. Asian J. Math. 3(4), 729–747 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Gross B.H., Zagier D.B.: Heegner points and derivatives of L-series. Invent. Math. 84(2), 225–320 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Imamoḡlu, O., O’Sullivan, C.: Parabolic, hyperbolic and elliptic Poincaré series. Accepted for publication in Acta Arithmetica (2009)

  8. Iwaniec, H.: Topics in classical automorphic forms. Graduate Studies in Mathematics, vol. 1. American Mathematical Society, Providence (1997)

  9. Iwaniec, H.: Spectral methods of automorphic forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. American Mathematical Society, Providence (2002)

  10. Jorgenson J., O’Sullivan C.: Convolution Dirichlet series and a Kronecker limit formula for second-order Eisenstein series. Nagoya Math. J. 179, 47–102 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Jorgenson J., O’Sullivan C.: Unipotent vector bundles and higher-order non-holomorphic Eisenstein series. J. Théor. Nombres Bordeaux 20(1), 131–163 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Knopp M., Robins S.: Easy proofs of Riemann’s functional equation for ζ(s) and of Lipschitz summation. Proc. Amer. Math. Soc. 129(7), 1915–1922 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Stat. Oper. Res., pp. 197–249. Horwood, Chichester (1984)

  14. Lang, S.: Introduction to modular forms. Grundlehren der Mathematischen Wissenschaften, vol. 222. [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1995). With appendixes by D. Zagier and Walter Feit, Corrected reprint of the 1976 original

  15. Lanphier D.: Combinatorics of Maass-Shimura operators. J. Number Theory 128(8), 2467–2487 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Manin Ju.I.: Periods of cusp forms, and p-adic Hecke series. Mat. Sb. (N.S.) 21(134), 371–393 (1973)

    MathSciNet  Google Scholar 

  17. Niebur D.: A formula for Ramanujan’s τ-function. Illinois J. Math. 19, 448–449 (1975)

    MATH  MathSciNet  Google Scholar 

  18. O’Sullivan, C.: Identities from the holomorphic projection of modular forms. In: Number theory for the millennium, III (Urbana, IL, 2000), pp. 87–106. A K Peters, Natick, MA (2002)

  19. O’Sullivan, C.: Formulas for Eisenstein series. Preprint (2009)

  20. Petersson H.: Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art. Abh. Math. Sem. Hansischen Univ. 14, 22–60 (1941)

    Article  MathSciNet  Google Scholar 

  21. Ramanujan, S.: On certain arithmetical functions [Trans. Cambridge Philos. Soc. 22(9), 159–184 (1916)]. In Collected papers of Srinivasa Ramanujan, pp. 136–162. AMS Chelsea Publ., Providence, RI (2000)

  22. Shimura G.: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29(6), 783–804 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sturm J.: Projections of C automorphic forms. Bull. Amer. Math. Soc. (N.S.) 2(3), 435–439 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 105–169. Lecture Notes in Math., vol. 62. Springer, Berlin (1977)

  25. Zagier D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zagier, D.: Introduction to modular forms. In From number theory to physics (Les Houches, 1989), pp. 238–291. Springer, Berlin (1992)

  27. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of modular forms, Universitext, pp. 1–103. Springer, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamantis, N., O’Sullivan, C. Kernels of L-functions of cusp forms. Math. Ann. 346, 897–929 (2010). https://doi.org/10.1007/s00208-009-0419-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0419-4

Mathematics Subject Classification (2000)

Navigation