Skip to main content
Log in

At infinity of finite-dimensional CAT(0) spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space X has a non-empty intersection in the visual bordification \({ \overline{X} = X \cup \partial X}\) . Using this fact, several results known for proper CAT(0) spaces may be extended to finite-dimensional spaces, including the existence of canonical fixed points at infinity for parabolic isometries, algebraic and geometric restrictions on amenable group actions, and geometric superrigidity for non-elementary actions of irreducible uniform lattices in products of locally compact groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams S., Ballmann W.: Amenable isometry groups of Hadamard spaces. Math. Ann. 312(1), 183–195 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature. In: Progress in Mathematics, vol. 61, p. 217. Birkhäuser Boston Inc., Boston (1985)

  3. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften 319, Springer, Berlin (1999)

  4. Balser A., Lytchak A.: Centers of convex subsets of buildings. Ann. Global Anal. Geom. 28(2), 201–209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burger M., Schroeder V.: Amenable groups and stabilizers of measures on the boundary of a Hadamard manifold. Math. Ann. 276(3), 505–514 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caprace, P.-E.: Amenable groups and Hadamard spaces with a totally disconnected isometry group. Comment. Math. Helv. 84, 437–455 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Caprace, P.-E., Monod, N.: Isometry groups of nonpositively curved spaces. (2009, preprint)

  8. Dugundji J.: Maps into nerves of closed coverings. Ann. Scuola Norm. Sup. Pisa (3) 21, 121–136 (1967)

    MATH  MathSciNet  Google Scholar 

  9. Eberlein, P.B.: Geometry of nonpositively curved manifolds. In: Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)

  10. Farb, B.: Group actions and Helly’s theorem. (2009, preprint)

  11. Foertsch T., Lytchak A.: The de Rham decomposition theorem for metric spaces. Geom. Funct. Anal. 18(1), 120–143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fujiwara K., Nagano K., Shioya T.: Fixed point sets of parabolic isometries of CAT(0)-spaces. Comment. Math. Helv. 81(2), 305–335 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jung H.: Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. reine angew. Math. 123, 241–257 (1901)

    MATH  Google Scholar 

  14. Kleiner B.: The local structure of length spaces with curvature bounded above. Math. Z. 231(3), 409–456 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karlsson A., Margulis G.A.: A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys. 208(1), 107–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lang U., Schroeder V.: Jung’s theorem for Alexandrov spaces of curvature bounded above. Ann. Global Anal. Geom. 15, 263–275 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lytchak A., Schroeder V.: Affine functions on CAT(κ) spaces. Math. Z. 255, 231–244 (2007)

    Article  MathSciNet  Google Scholar 

  18. Lytchak A.: Open map theorem for metric spaces. Algebra i Analiz 17(3), 139–159 (2005)

    MathSciNet  Google Scholar 

  19. Lytchak A.: Rigidity of spherical buildings and joins. Geom. Funct. Anal. 15(3), 720–752 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mayer U.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom. 6, 199–253 (1998)

    MATH  MathSciNet  Google Scholar 

  21. Monod N.: Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19(4), 781–814 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Šarafutdinov, V.A.: The Pogorelov-Klingenberg theorem for manifolds that are homeomorphic to R n. Sibirsk. Mat. Ž. 18(4), 915–925, 958 (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Caprace.

Additional information

Alexander Lytchak was supported in part by SFB 611 and MPI für Mathematik in Bonn. Pierre-Emmanuel Caprace was supported by F.R.S.-F.N.R.S. (Fonds National de la Recherche Scientifique, Belgium).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caprace, PE., Lytchak, A. At infinity of finite-dimensional CAT(0) spaces. Math. Ann. 346, 1–21 (2010). https://doi.org/10.1007/s00208-009-0381-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0381-1

Mathematics Subject Classification (2000)

Navigation