Skip to main content
Log in

Quantitative Homogenization in Nonlinear Elasticity for Small Loads

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study quantitative periodic homogenization of integral functionals in the context of nonlinear elasticity. Under suitable assumptions on the energy densities (in particular frame indifference; minimality, non-degeneracy and smoothness at the identity; \({p \geqq d}\)-growth from below; and regularity of the microstructure), we show that in a neighborhood of the set of rotations, the multi-cell homogenization formula of non-convex homogenization reduces to a single-cell formula. The latter can be expressed with the help of correctors. We prove that the homogenized integrand admits a quadratic Taylor expansion in an open neighborhood of the rotations – a result that can be interpreted as the fact that homogenization and linearization commute close to the rotations. Moreover, for small applied loads, we provide an estimate on the homogenization error in terms of a quantitative two-scale expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam 2003

  2. Anza Hafsa, O., Mandallena, J.: Homogenization of nonconvex integrals with convex growth. J. Math. Pures Appl. 96, 167–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barchiesi, M., Gloria, A.: New counterexamples to the cell formula in nonconvex homogenization. Arch. Ration. Mech. Anal. 195, 991–1024 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, vol. 5. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  6. Braides, A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL Mem. Mat. 9, 313–321 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Briane, M., Francfort, G.: Loss of ellipticity through homogenization in linear elasticity. Math. Models Methods Appl. Sci. 25, 905–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardone, G., Pasthukova, S. E., Zhikov, V. V.: Some estimates for non-linear homogenization. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 29(5), 101–110, 2005

  9. Carstensen, C., Dolzmann, G.: An a priori error estimate for finite element discretizations in nonlinear elasticity for polyconvex materials under small loads. Numer. Math 97, 67–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conti, S., Dolzmann, G., Kirchheim, B., Müller, S.: Sufficient conditions for the validity of the Cauchy-Born rule close to SO(\(n\)). J. Eur. Math. Soc. 8, 515–530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dacorogna, B.: Direct Methods in the Calculus of Variation, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  12. Duerinckx, M., Gloria, A.: Stochastic homogenization of nonconvex unbounded integral functionals with convex growth. Arch. Ration. Mech. Anal. 221, 1511–1584 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Springer, 1998

  14. Griso, G.: Error estimate and unfolding for periodic homogenization. Asymptot. Anal. 40, 269–286 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Geymonat, G., Müller, S., Triantafyllidis, N.: Homogenization of nonlinear elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Ration. Mech. Anal. 122, 231–290 (1993)

    Article  MATH  Google Scholar 

  16. Francfort, G., Gloria, A.: Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity. C. R. Math. Acad. Sci. Paris 354, 1139–1144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friesecke, G., Theil, F.: Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ghomi, M.: The problem of optimal smoothing of convex functions. Proc. Am. Math. Soc. 130, 2255–2259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. Scuola Normale Superiore Pisa, seconda edizione edition, 2012

  21. Gloria, A., Neukamm, S.: Commutability of homogenization and linearization at the identity in finite elasticity and applications. Ann. Inst. H. Poincaré Anal. Non Lineaire 28, 941–964, 2011

  22. Jesenko, M., Schmidt, B.: Closure and commutability results for \(\Gamma \)-limits and the geometric linearization and homogenization of multiwell energy functionals. SIAM Journal on Mathematical Analysis. 46(4), 2525–2553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994)

    Book  Google Scholar 

  24. Marcellini, P.: Periodic solutions and homogenization of nonlinear variational problems. Annali di Matematica Pura ed Applicata. Serie Quarta 117, 139–152, 1978

  25. Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99, 189–212 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Müller, S., Neukamm, S.: On the commutability of homogenization and linearization in finite elasticity. Arch. Ration. Mech. Anal. 201, 465–500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pastukhova, S.E.: Operator estimates in nonlinear problems of reiterated homogenization. Proc. Steklov Inst. Math. 261, 214–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Suslina, T.A.: Homogenization of the Dirichlet problem for elliptic systems: L2-operator error estimates. Mathematika 59, 463–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, Z., Zhuge, J.: Convergence rates in periodic homogenization of systems of elasticity. Proc. Am. Math. Soc. 145, 1187–1202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Valent, T.: Boundary Value Problems of Finite Elasticity. Springer, 1988

  31. Zhang, K.: Energy minimizers in nonlinear elastostatics and the implicit function theorem. Arch. Ration. Mech. Anal. 114, 95–117 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhikov, V.V., Pastukhova, S.E.: On operator estimates for some problems in homogenization theory. Russ. J. Math. Phys. 12, 515–524 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Neukamm.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neukamm, S., Schäffner, M. Quantitative Homogenization in Nonlinear Elasticity for Small Loads. Arch Rational Mech Anal 230, 343–396 (2018). https://doi.org/10.1007/s00205-018-1247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1247-z

Navigation