Skip to main content
Log in

Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier–Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the inviscid limit of the free boundary Navier–Stokes equations. We prove the existence of solutions on a uniform time interval by using a suitable functional framework based on Sobolev conormal spaces. This allows us to use a strong compactness argument to justify the inviscid limit. Our approach does not rely on the justification of asymptotic expansions. In particular, we get a new existence result for the Euler equations with free surface from the one for Navier–Stokes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for water gravity waves. Invent. Math. 198, 71–163 (2014)

  2. Alinhac, S.: Existence d’ondes de rarfaction pour des systmes quasi-linaires hyperboliques multidimensionnels. (French) [Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Commun. Partial Differ. Equ. 14(2), 173230 (1989)

  3. Ambrose D.M., Masmoudi N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrose D.M., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58(2), 479–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beale J.T.: The initial value problem for the Navier–Stokes equations with a free surface. Commun. Pure Appl. Math. 34(3), 359–392 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beale, J.T.: Large-time regularity of viscous surface waves. Arch. Rational Mech. Anal. 84(4), 307–352 (1983/84)

  7. Beale J.T., Hou T., Lowengrub J.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46, 1269–1301 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirãoda Veiga H., Crispo F.: Concerning the W k, p-inviscid limit for 3-D flows under a slip boundary condition. J. Math. Fluid Mech. 13(1), 117–135 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires (French) [Symbolic calculus and propagation of singularities for nonlinear partial differential equations]. Ann. Sci. Cole Norm. Sup. (4) 14(2), 209–246 (1981)

  10. Chemin, J.-Y.: FFluides parfaits incompressibles. (French)[Incompressible perfect fluids] Astérisque No230 (1995), p 177

  11. Christodoulou D., Lindblad H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Craig W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10, 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. DiPerna R.J., Majda A.J.: Concentrations in regularizations for 2-D incompressible flow. Commun. Pure Appl. Math. 40(3), 301–345 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Weinan E.: Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation. it Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weinan E., Engquist B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293 (1997)

    Article  MATH  Google Scholar 

  18. Gérard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Germain P., Masmoudi N., Shatah J.: Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris 347(15–16), 897–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math (To appear) (2011)

  21. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Reprint of the: edition. Springer, Berlin, Classics in Mathematics (1998). 2001

  22. Gisclon, M., Serre, D.: D Étude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319(4), 377–382 (1994)

  23. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grenier, E.: Boundary Layers. Handbook of Mathematical Fluid Dynamics. Vol. III, pp. 245–309. North-Holland, Amsterdam, 2004

  25. Grenier E., Guès O.: Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differ. Equ. 143(1), 110–146 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Grenier E., Rousset F.: Stability of one-dimensional boundary layers by using Green’s functions. Commun. Pure Appl. Math. 54(11), 1343–1385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guès O.: Problème mixte hyperbolique quasi-linéaire caractéristique. Commun. Partial Differ. Equ. 15(5), 595–645 (1990)

    Article  MATH  Google Scholar 

  28. Guès, O., Métivier, G., Williams, M., Zumbrun, K.: Existence and stability of noncharacteristic boundary layers for the compressible Navier–Stokes and viscous MHD equations. Arch. Ration. Mech. Anal. 197(1), 1–87 (2010)

  29. Guo Y., Nguyen T.: A note on the Prandtl boundary layers. Commun. Pure Appl. Math. 64, 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension. Preprint 2010, arXiv:1011.5179

  31. Hörmander L.: Pseudo-differential operators and non-elliptic boundary problems. Ann. Math. (2) 83, 129–209 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kato T.: Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kato, T.: Remarks on the Euler and Navier–Stokes equations in R 2. In: Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), pp 1–7. Am. Math. Soc., Providence, R.I. 1986

  34. Lannes, D.: Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–654 (2005), (electronic)

  35. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majda, A., Bertozzi, A.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, Vol. 27. Cambridge University Press, Cambridge, 2002

  37. Majda A., Osher S.: Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary. Commun. Pure Appl. Math. 28(5), 607–675 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Masmoudi N.: The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Rational Mech. Anal. 142(4), 375–394 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Masmoudi N.: Remarks about the inviscid limit of the Navier–Stokes system. Commun. Math. Phys. 270(3), 777–788 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Masmoudi, N., Rousset, F.: Uniform regularity for the Navier–Stokes equation with navier boundary condition. Arch. Ration. Mech. Anal. (to appear) (2011)

  41. Métivier G., Zumbrun, K.: K, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175, 826 (2005)

  42. Nalimov, V.I.: The Cauchy–Poisson problem. Dinamika Splov sn. Sredy, (18):104–210, 254 (1974)

  43. Ogawa M., Tani A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12, 1725–1740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rauch J.: Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Am. Math. Soc. 291(1), 167–187 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rousset F.: Characteristic boundary layers in real vanishing viscosity limits. J. Differ. Equ. 210(1), 25–64 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

  47. Schneider G., Wayne C.E.: The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration. Mech. Anal. 162(3), 247–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schweizer B.: On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 753–781 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Solonnikov V.A.: Solvability of a problem on the motion of a viscous incompressible fluid bounded by a free surface. Math. U.S.S.R. Izvestijya 11, 1323–1358 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  51. Swann H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in R 3. Trans. Am. Math. Soc. 157, 373–397 (1971)

    MathSciNet  MATH  Google Scholar 

  52. Tani A.: Small-time existence for the three-dimensional Navier–Stokes equations for an incompressible fluid with a free surface. Arch. Rational Mech. Anal. 133(4), 299–331 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Tartakoff, D.S.: Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21, 1113–1129 (1971/72)

  54. Temam, R., Wang, X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179(2), 647–686 (2002)

  55. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Wu S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Wu S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Xin Z.: Viscous boundary layers and their stability. I. J. Partial Differ. Equ. 11, 97–124 (1998)

    MathSciNet  MATH  Google Scholar 

  59. Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang P., Zhang Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Masmoudi.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, N., Rousset, F. Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier–Stokes Equations. Arch Rational Mech Anal 223, 301–417 (2017). https://doi.org/10.1007/s00205-016-1036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1036-5

Navigation