Skip to main content
Log in

KAM for Reversible Derivative Wave Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of Cantor families of small amplitude, analytic, linearly stable quasi-periodic solutions of reversible derivative wave equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Reversible Systems, Nonlinear and Turbulent Processes in Physics, vol. 3 (Kiev, 1983), pp. 1161–1174. Harwood Academic Publ., Chur, (1984)

  2. Berti M., Biasco L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun. Math. Phys. 305(3), 741–796 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Berti M., Biasco L., Procesi M.: KAM theory for the Hamiltonian derivative wave equation. Annales scientifique de l’ENS 46(2): 301–373 (2013)

    MATH  MathSciNet  Google Scholar 

  4. Berti M., Biasco L., Procesi M.: Existence and stability of quasi-periodic solutions of reversible derivative wave equations. Rend. Lincei Mat. Appl. 24, 1–16 (2013)

    MathSciNet  Google Scholar 

  5. Berti M., Bolle P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Biasco L., Di Gregorio L.: A Birkhoff-Lewis type theorem for the nonlinear wave equation. Arch. Ration. Mech. Anal. 196(1): 303–362 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Notices 11 (1994)

  8. Bourgain, J.: Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations, Chicago Lectures in Mathematics, pp. 69–97. Univ. Chicago Press, Chicago, (1999)

  9. Chierchia L., You J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 497–525 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, vol. 9. Société Mathématique de France, Paris, (2000)

  11. Craig, W., Wayne, C. E.: Newton’s method and periodic solutions of nonlinear wave equation. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Google Scholar 

  12. Eliasson L.H., Kuksin S.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Commun. Math. Phys. 286, 125–135 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Eliasson L.H., Kuksin S.: KAM for non-linear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383–427 (2011)

    Google Scholar 

  15. Liu J., Yuan X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys 307(3): 629–673 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Kappeler, T., Pöschel, J.: KAM and KdV. Springer, Berlin, (2003)

  17. Klainermann S., Majda A.: Formation of singularities for wave equations including the nonlinear vibrating string. Commun. Pure Appl. Math. 33, 241–263 (1980)

    Article  Google Scholar 

  18. Kuksin S.: A KAM theorem for equations of the Korteweg-de Vries type. Rev. Math. Math. Phys. 10(3): 1–64 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Kuksin, S.: Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, vol. 19. Oxford University Press, Oxford, (2000)

  20. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Google Scholar 

  21. Pöschel J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71(2): 269–296 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Procesi, C., Procesi, M.: A KAM algorithm for the completely resonant nonlinear Schrödinger equation (2012, preprint)

  23. Procesi M., Xu X.: Quasi-Töplitz functions in KAM theorem. SIAM J. Math. Anal. 45(4): 2148–2181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rabinowitz, P.: Periodic solutions of nonlinear hyperbolic partial differential equations. Commun. Pure Appl. Math. 20, 145–205 (1967)

    Google Scholar 

  25. Rabinowitz P.: Periodic solutions of nonlinear hyperbolic partial differential equations II. Commun. Pure Appl. Math. 22, 15–39 (1968)

    Article  MathSciNet  Google Scholar 

  26. Sevryuk, M.B.: Reversible Systems, Lecture Notes in Math, vol. 1211. Springer, Berlin, (1986)

  27. Wayne E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Zhang J., Gao M., Yuan X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Berti.

Additional information

This research was supported by the European Research Council under FP7 and partially by the PRIN2009 grant “Critical point theory and perturbative methods for nonlinear differential equations.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berti, M., Biasco, L. & Procesi, M. KAM for Reversible Derivative Wave Equations. Arch Rational Mech Anal 212, 905–955 (2014). https://doi.org/10.1007/s00205-014-0726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0726-0

Keywords

Navigation