Skip to main content
Log in

Setting and Analysis of the Multi-configuration Time-dependent Hartree–Fock Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we formulate and analyze the multi-configuration time-dependent Hartree–Fock (MCTDHF) equations for molecular systems with pairwise interaction. This set of coupled nonlinear PDEs and ODEs is an approximation of the N-particle time-dependent Schrödinger equation based on (time-dependent) linear combinations of (time-dependent) Slater determinants. The “one-electron” wave-functions satisfy nonlinear Schrödinger-type equations coupled to a linear system of ordinary differential equations for the expansion coefficients. The invertibility of the one-body density matrix (full-rank hypothesis) plays a crucial rôle in the analysis. Under the full-rank assumption a fiber bundle structure emerges and produces unitary equivalence between different useful representations of the MCTDHF approximation. For a large class of interactions (including Coulomb potential), we establish existence and uniqueness of maximal solutions to the Cauchy problem in the energy space as long as the density matrix is not singular. A sufficient condition in terms of the energy of the initial data ensuring the global-in-time invertibility is provided (first result in this direction). Regularizing the density matrix violates energy conservation. However, global well-posedness for this system in L 2 is obtained with Strichartz estimates. Eventually, solutions to this regularized system are shown to converge to the original one on the time interval when the density matrix is invertible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando T.: Properties of fermions density matrices. Rev. Mod. Phys. 35(3), 690–702 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  2. Baltuska A., Udem Th., Uiberacker M., Hentschel M., Gohle Ch., Holzwarth R., Yakovlev V., Scrinzi A., Hänsch T.W., Krausz F.: Attosecond control of electronic processes by intense light fields. Nature 421, 611 (2003)

    Article  ADS  Google Scholar 

  3. Bardos C., Catto I., Mauser N.J., Trabelsi S.: Global-in-time existence of solutions to the multi-configuration time-dependent Hartree–Fock equations: a sufficient condition. Appl. Math. Lett. 22, 147–152 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bardos C., Golse F., Mauser N.J., Gottlieb A.: Mean-field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82, 665–683 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Beck M., Jäckle A.H., Worth G.A., Meyer H.-D.: The multi-configuration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagation wave-packets. Phys. Rep. 324, 1–105 (2000)

    Article  ADS  Google Scholar 

  6. Bove A., Da Prato G., Fano G.: On the Hartree–Fock time-dependent problem. Commun. Math. Phys. 49, 25–33 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  7. Caillat J., Zanghellini J., Kitzler M., Koch O., Kreuzer W., Scrinzi A.: Correlated multi-electron systems in strong laser fields—an MCTDHF approach. Phys. Rev. A 71, 012712 (2005)

    Article  ADS  Google Scholar 

  8. Cancès E., Le Bris C.: On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics. Math. Models Methods Appl. Sci. 9, 963–990 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Castella F.: L 2 solutions to the Schrödinger–Poisson system: existence, uniqueness, time behavior, and smoothing effects. Math. Models Methods Appl. Sci. 7(8), 1051–1083 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cazenave, T.: An introduction to nonlinear Schrödinger equations. Second edition, Textos de Métodos Mathemáticas 26, Universidade Federal do Rio de Janeiro,1993

  11. Cazenave, T., Haraux, A.: An introduction to semi-linear evolution equations. Oxford Lecture Series in Mathematics and Its Applications, Vol. 13. Oxford University Press, New York, 1998

  12. Chadam J.M., Glassey R.T.: Global existence of solutions to the Cauchy problem for the time-dependent Hartree equation. J. Math. Phys. 16, 1122–1230 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Coleman A.J.: Structure of Fermion density matrices. Rev. Mod. Phys. 35(3), 668–689 (1963)

    Article  ADS  Google Scholar 

  14. Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices: Coulson’s Challenge. Lectures Notes in Chemistry, Vol. 72, Springer, Berlin, 2000

  15. Dirac P.A.M.: Note on exchange phenomenon in the thomas atom. Proc. Cambridge Phil. Soc 26, 376 (1930)

    Article  MATH  Google Scholar 

  16. Frenkel J.: Wave Mechanics. Oxford University Press, Oxford (1934)

    Google Scholar 

  17. Friesecke G.: The multi-configuration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Rational Mech. Anal. 169, 35–71 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Friesecke G.: On the infinitude of non-zero eigenvalues of the single-electron density matrix for atoms and molecules. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2029), 47–52 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Gatti, F., Meyer, H.D., Worth, G.A. (eds): Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, New York (2009)

    Google Scholar 

  20. Gottlieb A.D., Mauser N.J.: New measure of electron correlation. Phys. Rev. Lett. 95(12), 1230003 (2005)

    Article  Google Scholar 

  21. Gottlieb, A.D., Mauser, N.J.: Properties of non-freeness: an entropy measure of electron correlation. Int. J. Quantum Inf. 5(6), 10–33 (2007). E-print arXiv:quant-ph/0608171v3

    Google Scholar 

  22. Grobe R., Rza̧zewski K., Eberly J.H.: Measure of electron–electron correlation in atomic physics. J. Phys. B 27, L503–L508 (1994)

    Article  ADS  Google Scholar 

  23. Kato T., Kono H.: Time-dependent multi-configuration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392, 533–540 (2004)

    Article  ADS  Google Scholar 

  24. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Koch O., Kreuzer W., Scrinzi A.: Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173, 960–976 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Koch O., Lubich C.: Regularity of the multi-configuration time-dependent hartree approximation in quantum molecular dynamics. M2AN Math. Model. Numer. Anal. 41, 315–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Le Bris C.: A general approach for multi-configuration methods in quantum molecular chemistry. Ann. Inst. H. Poincaré Anal. Non Linéaire 11(4), 441–484 (1994)

    MATH  MathSciNet  Google Scholar 

  28. Lewin M.: Solutions of the Multi-configuration Equations in Quantum Chemistry. Arch. Rational Mech. Anal. 171(1), 83–114 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  29. Löwdin P.O.: Quantum theory of many-particles systems, I: physical interpretations by mean of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  30. Lubich C.: On variational approximations in quantum molecular dynamics. Math. Comp. 74, 765–779 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Lubich C.: A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48, 355–368 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Edition EMS, 2008

  33. McWeeny R.: Methods of Molecular Quantum Mechanics, 2nd edn. Academic Press, London (1992)

    Google Scholar 

  34. Mauser, N.J., Trabelsi, S.: L 2 Analysis of the Multi-configuration Time-Dependent Equations. Math. Models Methods Appl. Sci. (2010, to appear)

  35. Pazy A.: Semi-groups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Google Scholar 

  36. Segal I.: Non-linear semi-groups. Ann. Math. 78, 339–364 (1963)

    Article  Google Scholar 

  37. Trabelsi S.: Solutions of the multi-configuration time-dependent equations in quantum chemistry. C. R. Math. Acad. Sci. Paris 345(3), 145–150 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Tsutsumi Y.: L 2−solutions for nonlinear Schrödinger equation and nonlinear groups. Funk. Ekva. 30, 115–125 (1987)

    MATH  MathSciNet  Google Scholar 

  39. Zagatti S.: The Cauchy problem for Hartree–Fock time dependent equations. Ann. Inst. H. Poincaré, Phys. Th. 56(4), 357–374 (1992)

    MATH  MathSciNet  Google Scholar 

  40. Zanghellini J., Kitzler M., Fabian C., Brabec T., Scrinzi A.: An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phys. 13(8), 1064–1068 (2003)

    Google Scholar 

  41. Zanghellini J., Kitzler M., Brabec T., Scrinzi A.: Testing the multi-configuration time-dependent Hartree–Fock method. J. Phys. B At. Mol. Phys. 37, 763–773 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Bardos.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardos, C., Catto, I., Mauser, N. et al. Setting and Analysis of the Multi-configuration Time-dependent Hartree–Fock Equations. Arch Rational Mech Anal 198, 273–330 (2010). https://doi.org/10.1007/s00205-010-0308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0308-8

Keywords

Navigation