Skip to main content
Log in

Stochastic Formulation for the Initial-Boundary Value Problems of the Boltzmann Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Aoki K., Cercignani C.: Evaporation and condensation on two parallel plates at finite Reynolds numbers. Phys. Fluids 26, 1163–1164 (1983)

    Article  ADS  Google Scholar 

  2. Aoki K.: Introduction (Yashio Sone). Bull. Inst. Math. Acad. Sin. (NS) 2(4), 805–822 (2007)

    MATH  Google Scholar 

  3. Arkeryd L., Cercignani C.: A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal. Arch. Rat. Mech. Anal. 125, 271–287 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arkeryd L., Cercignani C., Illner R.: Measure solutions of the steady Boltzmann equation in a slab. Comm. Math. Phys. 142, 285–296 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Arkeryd, L., Maslova, N.: On diffuse reflection at the boundary for the Boltzmann equation and related equations. J. Stat. Phys. 77 (1994)

  6. Arkeryd L.: Nouri, A compactness result related to the stationary Boltzmann equation in a slab, with applications to the existence theory. Ind. Univ. Math. J. 44(Nb3), 815–839 (1995)

    MATH  Google Scholar 

  7. Arkeryd L.: Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions. Monatsh. Math. 123(4), 285–298 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain J., Golse F., Wennberg B.: On the distribution of free paths lengths in the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508 (1998)

    Article  ADS  MATH  Google Scholar 

  9. Caflisch, R.E.: The Boltzmann equation with a soft potential, I and II. Commun. Math. Phys. 74, 71–95, 97–109 (1980)

    Article  ADS  MATH  Google Scholar 

  10. Caflisch R.E., Nicolaenko B.: Shock profile solutions of the Boltzmann equation. Commun. Math. Phys. 89, 161–194 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Caprino S., Cavallaro G., Marchioro C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17(9), 1369–1403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caprino S., Marchioro C., Pulvirenti M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264(1), 167–189 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cercignani C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  14. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, Vol. 106. Springer, New York, 1994

  15. Chen C.-C., Chen I.-K., Liu T.-P., Sone Y.: Thermal transpiration for the linearized Boltzmann equation. Commun. Pure Appl. Math. 60(2), 147–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung K.-L.: A Course in Probability Theory. Academic Press, New York (1974)

    MATH  Google Scholar 

  17. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. math. 159, 245–316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Golse, F.: Golse’s theorem on a one-way flow. Appendix A.4 in Kinetic Theory and Fluid Dynamics, 1st edn, August 12. (Ed. Sone Y.) Birkhauser, Boston, 2002

  19. Golse, F.: The periodic Lorentz gas in the Boltzmann-Grad limit. Proceedings International Congress of Mathematicians, Madrid, 2006, vol. 3. (Eds. M. Sanz-Solé, J. Soria, J.-L. Varona and J. Verdera) European Math. Soc., Zürich, 183–201, 2006

  20. Golse F., Caglioti E.: On the distribution of free paths lengths in the periodic Lorentz gas III. Commun. Math. Phys. 236, 199–221 (2003)

    Article  ADS  MATH  Google Scholar 

  21. Grad, H.: Asymptotic theory of the Boltzmann equation, II. Int. Symp. on Rarefied Gas Dynamics, Third Symp., 25–59 (1962)

  22. Grad, H.: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations. Proc. Symp. Appl. Math., Vol. 17 (Ed. R. Finn), AMS, Providence, 154–183, 1965

  23. Grad, H.: Proc. Symp. in Appl. Math. 17, 154–183 (1965), Rarified Gas Dynamics, I, 26–59 (1963)

  24. Hamdache K.: Weak solutions of the Boltzmann equation. Arch. Rat. Mech. Anal. 119, 309–353 (1992)

    Article  MATH  Google Scholar 

  25. Hilbert, D.: Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen, Chap. 22, Teubner, Leipzig

  26. Liu T.-P., Yu S.-H.: The Green’s function and large-time behavior of solutions for one-dimensional Boltzmann equation. Commun. Pure. Appl. Math. 57(12), 1543–1608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu T.-P., Yu S.-H.: Green’s function of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sin. (NS) 1(1), 1–78 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Liu T.-P., Yu S.-H.: Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Commun. Pure Appl. Math. 60(3), 295–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maxwell J.C.: On stresses in rarefied gases arising from inequalities of temperature. R. Soc. Phil. Trans. 27, 304–308 (1878)

    MATH  Google Scholar 

  30. Niimi H.: Thermal creep flow of rarefied gas between two parallel plates. J. Phys. Soc. Jpn 30, 572–574 (1971)

    Article  ADS  Google Scholar 

  31. Pao Y.P.: Application of kinetic theory to the problem of evaporation and condensation. Phys. Fluids 14, 306–312 (1971)

    Article  ADS  Google Scholar 

  32. Sone Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn 21, 1836–1837 (1966)

    Article  ADS  Google Scholar 

  33. Sone Y.: Flow induced by thermal stress in rarefied gas. Phys. Fluids 15, 1418–1423 (1972)

    Article  ADS  Google Scholar 

  34. Sone, Y.: Kinetic Theory and Fluid Dynamics, 1st edn. August 12, Birkhauser, Boston, 2002

  35. Sone Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhauser, Boston (2007)

    Book  MATH  Google Scholar 

  36. Sone, Y., Yamamoto, K.: Flow of rarefied gas through a circular pipe. Phys Fluids 11, 1672–1678 (1968) Erratum: Phys Fluids 2007, 1651 (1970)

    Article  ADS  MATH  Google Scholar 

  37. Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn Acad. 50, 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hsien Yu.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, SH. Stochastic Formulation for the Initial-Boundary Value Problems of the Boltzmann Equation. Arch Rational Mech Anal 192, 217–274 (2009). https://doi.org/10.1007/s00205-008-0139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0139-z

Keywords

Navigation