Skip to main content
Log in

Geometric Currents in Piezoelectricity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

As a simple model for piezoelectricity we consider a gas of infinitely many non-interacting electrons subject to a slowly time-dependent periodic potential. We show that in the adiabatic limit the macroscopic current is determined by the geometry of the Bloch bundle. As a consequence we obtain the King-Smith and Vanderbilt formula up to errors smaller than any power of the adiabatic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron J.E., Berger J., Last Y. (1997) Piezoelectricity: quantized charge transport driven by adiabatic deformations. Phys. Rev. Lett. 78: 511–514

    Article  ADS  Google Scholar 

  2. Bellissard J., van Elst A., Schulz-Baldes H. (1994) The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10): 5373–5451

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Elgart A., Schlein B. (2004) Adiabatic charge transport and the Kubo formula for Landau type hamiltonians. Commun. Pure Appl. Math. 57: 590–615

    Article  MathSciNet  MATH  Google Scholar 

  4. Faure F., Zhilinskii B. (2001) Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum. Lett. Math. Phys. 55: 219–238

    Article  MathSciNet  MATH  Google Scholar 

  5. Folland G. (1989) Harmonic Analysis in Phase Space. Princeton University Press, Princeton

    MATH  Google Scholar 

  6. Kato T. (1950) On the adiabatic theorem of quantum mechanics. Phys. Soc. J. 5: 435–439

    Article  ADS  Google Scholar 

  7. King-Smith R.D., Vanderbilt D. (1993) Theory of polarization of crystalline solids. Phys. Rev. B 47: 1651–1654

    Article  ADS  Google Scholar 

  8. Klein M., Seiler R. (1990) Power-law corrections to the Kubo formula vanish in quantum Hall systems. Commun. Math. Phys. 128: 141–160

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Koizumi H., Takada Y. (2002) Geometric phase current in solids: derivation in a path integral approach. Phys. Rev. B 65: 153104–153110

    Article  ADS  Google Scholar 

  10. Martin R.M. (1974) Comment on calculations of electric polarization in crystals. Phys. Rev. B 9: 1998–1203

    Article  ADS  Google Scholar 

  11. Marzari N., Vanderbilt D. (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56: 12847–12865

    Article  ADS  Google Scholar 

  12. Nenciu G. (1983) Existence of the exponentially localised Wannier functions. Commun. Math. Phys. 91(1): 81–85

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nenciu G. (1993) Linear adiabatic theory. Exponential estimates. Commun. Math. Phys. 152: 479–496

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Niu Q., Thouless D.J., Wu Y.S. (1985) Quantized Hall conductance as a topological invariant. Phys. Rev. B 31(6): 3372–3377

    Article  ADS  MathSciNet  Google Scholar 

  15. Panati G., Spohn H., Teufel S. (2003) Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7: 145–204

    Article  MathSciNet  Google Scholar 

  16. Panati G., Spohn H., Teufel S. (2003) Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242: 547–578

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Panati G. (2007) Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poicaré 8: 995–1011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Reed M., Simon B. (1975) Methods of Modern Mathematical Physics. Academic, New York

    MATH  Google Scholar 

  19. Resta R. (1992) Theory of the electric polarization in crystals. Ferroelectrics 136: 51–75

    Article  Google Scholar 

  20. Resta R. (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66(3): 899–915

    Article  ADS  Google Scholar 

  21. Resta, R.: Berry phase and geometric quantum distance: macroscopic polarization and electron localization. Lecture notes for the “Troisième Cycle de la Phyique en Suisse Romande 1999–2000”, 2000

  22. Teufel, S.: Adiabatic perturbation theory in quantum dynamics. Lecture Notes in Mathematics, Vol. 1821. Springer, Heidelberg, 2003

  23. Teufel, S., Panati, G.: Propagation of Wigner functions for the Schrödinger equation with a perturbed periodic potential. In: Multiscale Methods in Quantum Mechanics (Eds. Blanchard P. and Dell’Antonio G.). Birkhäuser, Basel, 2004

  24. Thouless D.J., Kohomoto M., Nightingale M.P., den Nijs M. (1982) Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49: 405–408

    Article  ADS  Google Scholar 

  25. Thouless D.J. (1983) Quantization of particle transport. Phys. Rev. B 27(10): 6083–6087

    Article  ADS  MathSciNet  Google Scholar 

  26. Xiao D., Shi J., Niu Q. (2005) Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95: 137204–137208

    Article  ADS  Google Scholar 

  27. Wilcox C.H. (1978) Theory of Bloch waves. J. d’Anal. Math. 33: 146–167

    Article  MathSciNet  MATH  Google Scholar 

  28. Zak J. (1968) Dynamics of electrons in solids in external fields. Phys. Rev. 168: 686–695

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Panati.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panati, G., Sparber, C. & Teufel, S. Geometric Currents in Piezoelectricity. Arch Rational Mech Anal 191, 387–422 (2009). https://doi.org/10.1007/s00205-008-0111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0111-y

Keywords

Navigation