Skip to main content
Log in

Weak Solutions, Renormalized Solutions and Enstrophy Defects in 2D Turbulence

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Enstrophy, half the integral of the square of vorticity, plays a role in 2D turbulence theory analogous to the role of kinetic energy in the Kolmogorov theory of 3D turbulence. It is therefore interesting to obtain a description of the way enstrophy is dissipated at high Reynolds numbers. In this article we explore the notions of viscous and transport enstrophy defect, which model the spatial structure of the dissipation of enstrophy. These notions were introduced by G. Eyink in an attempt to reconcile the Kraichnan-Batchelor theory of 2D turbulence with current knowledge of the properties of weak solutions of the equations of incompressible and ideal fluid motion. Three natural questions arise from Eyink's theory: (i) existence of the enstrophy defects, (ii) conditions for the equality of transport and viscous enstrophy defects, (iii) conditions for the vanishing of the enstrophy defects. In [10], Eyink proved a number of results related to these questions and formulated a conjecture on how to answer these problems in a physically meaningful context. In the present article we improve and extend some of Eyink's results and present a counterexample to his conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975

  2. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. II 12, 233–239 (1969)

    Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin, 1976

  4. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston, MA, 1988

  5. Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  Google Scholar 

  6. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. DiPerna, R.J., Majda, A.J.: Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40, 301–345 (1987)

    Article  MathSciNet  Google Scholar 

  8. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Evans, L.C.: Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1990

  10. Eyink, G.L.: Dissipation in turbulent solutions of 2D Euler equations. Nonlinearity 14, 787–802 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Frisch, U.: Turbulence, The legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 1995

  12. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys Fluids 10, 1417–1423 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, Incompressible models, Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1996

  14. Lopes Filho, M.C., Nussenzveig Lopes, H.J., Tadmor, E.: Approximate solutions of the incompressible Euler equations with no concentrations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 371–412 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Majda, A.J.: Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 (1993)

    Article  MathSciNet  Google Scholar 

  16. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002

  17. Schochet, S.: The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Comm. Partial Differential Equations 20, 1077–1104 (1995)

    Article  MathSciNet  Google Scholar 

  18. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Comm. Math. Phys. 210, 541–603 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970

  20. Triebel, H.: Theory of function spaces. II. Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992

  21. Vishik, M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197–214 (1998)

    Article  MathSciNet  Google Scholar 

  22. Vishik, M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. (4) 32, 769–812 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vecchi, I., Wu, S.J.: On L 1-vorticity for 2-D incompressible flow. Manuscripta Math. 78, 403–412 (1993)

    Article  MathSciNet  Google Scholar 

  24. Yudovič, V.I.: Non-stationary flows of an ideal incompressible fluid. uZ. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    Google Scholar 

  25. Yudovich, V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena J. Nussenzveig Lopes.

Additional information

Communicated by Y. Brenier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes Filho, M., Mazzucato, A. & Nussenzveig Lopes, H. Weak Solutions, Renormalized Solutions and Enstrophy Defects in 2D Turbulence. Arch. Rational Mech. Anal. 179, 353–387 (2006). https://doi.org/10.1007/s00205-005-0390-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0390-5

Keywords

Navigation