Skip to main content

Advertisement

Log in

Risk factors for Down syndrome

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Down syndrome (DS) originates, in most of the cases (95 %), from a full trisomy of chromosome 21. The remaining cases are due to either mosaicism for chromosome 21 or the inheritance of a structural rearrangement leading to partial trisomy of the majority of its content. Full trisomy 21 and mosaicism are not inherited, but originate from errors in cell divisions during the development of the egg, sperm or embryo. In addition, full trisomy for chromosome 21 should be further divided into cases of maternal origin, the majority, and cases of paternal origin, less than 10 %. Among cases of maternal origin, a further stratification should be performed into errors that have occurred or originated during the first meiotic division in the maternal grandmother’s body and errors that occurred later in life during the second maternal meiotic division. This complex scenario suggests that our understanding of the risk factors for trisomy 21 should take into account the above stratification as it reflects different individuals and generations in which the first error has occurred. Unfortunately, most of the available literature is focused on maternal risk factors, and the only certain risk factors for the birth of a child with DS are advanced maternal age at conception and recombination errors, even though the molecular mechanisms leading to chromosome 21 nondisjunction are still a matter of debate. This article critically reviews the hypotheses and the risk factors which have been suggested to contribute to the birth of a child with DS, including folate metabolism, dietary, lifestyle, environmental, occupational, genetic and epigenetic factors, with focus on maternal and paternal risk factors, and taking into account the possible contribution of the maternal grandmother and that of the developing trisomic embryo, in a complex scenario depicting the birth of a child with DS as the result of complex gene–environment interactions and selection processes involving different generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel Hady S, Afifi HH, Abdel Ghany EA, Taher MB, Eid MM (2015) Micronucleus assay as a biomarker for chromosome malsegregation in young mothers with Down syndrome children. Genet Couns 26:13–19

    CAS  PubMed  Google Scholar 

  • Albizua I, Rambo-Martin BL, Allen EG, He W, Amin AS, Sherman SL (2015) Association between telomere length and chromosome 21 nondisjunction in the oocyte. Hum Genet 134:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alverson CJ, Strickland MJ, Gilboa SM, Correa A (2011) Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics 127:e647–e653

    Article  PubMed  Google Scholar 

  • Antonarakis SE (1998) Down syndrome. In: Jameson JL (ed) Principle of molecular medicine. Humana Press Inc, Totowa, pp 1069–1078

    Chapter  Google Scholar 

  • Asim A, Kumar A, Muthuswamy S, Jain S, Agarwal S (2015) Down syndrome: an insight of the disease. J Biomed Sci 22:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacalini MG, Gentilini D, Boattini A, Giampieri E, Pirazzini C, Giuliani C, Fontanesi E, Scurti M, Remondini D, Capri M, Cocchi G, Ghezzo A, Del Rio A, Luiselli D, Vitale G, Mari D, Castellani G, Fraga M, Di Blasio AM, Salvioli S, Franceschi C, Garagnani P (2015) Identification of a DNA methylation signature in blood cells from persons with Down syndrome. Aging (Albany NY) 7:82–96

    Article  Google Scholar 

  • Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH, Torfs CP, Dooley KJ, Freeman SB, Sherman SL (2011) Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: a report from the National Down Syndrome Project. Birth Defects Res A Clin Mol Teratol 91:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beetstra S, Thomas P, Salisbury C, Turner J, Fenech M (2005) Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat Res 578:317–326

    Article  CAS  PubMed  Google Scholar 

  • Bergström S, Carr H, Petersson G, Stephansson O, Bonamy AK, Dahlström A, Halvorsen CP, Johansson S (2016) Trends in congenital heart defects in infants with Down syndrome. Pediatrics. doi:10.1542/peds.2016-0123

    PubMed  Google Scholar 

  • Biselli JM, Goloni-Bertollo EM, Zampieri BL, Haddad R, Eberlin MN, Pavarino-Bertelli EC (2008) Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for Down syndrome in Brazil. Genet Mol Res 7:33–42

    Article  CAS  PubMed  Google Scholar 

  • Božović IB, Stanković A, Živković M, Vraneković J, Kapović M, Brajenović-Milić B (2015) Altered LINE-1 methylation in mothers of children with Down syndrome. PLoS One 10:e0127423

    Article  PubMed  Google Scholar 

  • Brandalize AP, Bandinelli E, dos Santos PA, Roisenberg I, Schüler-Faccini L (2009) Evaluation of C677T and A1298C polymorphisms of the MTHFR gene as maternal risk factors for Down syndrome and congenital heart defects. Am J Med Genet A 149A:2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Brandalize AP, Bandinelli E, Dos Santos PA, Schüler-Faccini L (2010) Maternal gene polymorphisms involved in folate metabolism as risk factors for Down syndrome offspring in Southern Brazil. Dis Markers 29:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke CM, Edwards JH, Smallpeice V (1961) 21-Trisomy/normal mosaicism in an intelligent child with some mongoloid characters. Lancet 1:1028–1030

    Article  CAS  PubMed  Google Scholar 

  • Coppedè F (2009) The complex relationship between folate/homocysteine metabolism and risk of Down syndrome. Mutat Res 682:54–70

    Article  PubMed  Google Scholar 

  • Coppedè F (2015) The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front Genet 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppedè F, Colognato R, Bonelli A, Astrea G, Bargagna S, Siciliano G, Migliore L (2007) Polymorphisms in folate and homocysteine metabolizing genes and chromosome damage in mothers of Down syndrome children. Am J Med Genet A 143A:2006–2015

    Article  PubMed  Google Scholar 

  • Coppedè F, Migheli F, Bargagna S, Siciliano G, Antonucci I, Stuppia L, Palka G, Migliore L (2009) Association of maternal polymorphisms in folate metabolizing genes with chromosome damage and risk of Down syndrome offspring. Neurosci Lett 449:15–19

    Article  PubMed  Google Scholar 

  • Coppedè F, Lorenzoni V, Migliore L (2013) The reduced folate carrier (RFC-1) 80A>G polymorphism and maternal risk of having a child with Down syndrome: a meta-analysis. Nutrients 5:2551–2563

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppedè F, Bosco P, Lorenzoni V, Denaro M, Anello G, Antonucci I, Barone C, Stuppia L, Romano C, Migliore L (2014) The MTRR 66A>G polymorphism and maternal risk of birth of a child with Down syndrome in Caucasian women: a case–control study and a meta-analysis. Mol Biol Rep 41:5571–5583

    Article  PubMed  Google Scholar 

  • Coppedè F, Denaro M, Tannorella P, Migliore L (2016) Increased MTHFR promoter methylation in mothers of Down syndrome individuals. Mutat Res 787:1–6

    Article  PubMed  Google Scholar 

  • Dekker AD, De Deyn PP, Rots MG (2014) Epigenetics: the neglected key to minimize learning and memory deficits in Down syndrome. Neurosci Biobehav Rev 45:72–84

    Article  CAS  PubMed  Google Scholar 

  • Dekker AD, Strydom A, Coppus AM, Nizetic D, Vermeiren Y, Naudé PJ, Van Dam D, Potier MC, Fortea J, De Deyn PP (2015) Behavioural and psychological symptoms of dementia in Down syndrome: early indicators of clinical Alzheimer’s disease? Cortex 73:36–61

    Article  PubMed  Google Scholar 

  • Dobson R (2003) Painting is earliest example of portrayal of Down’s syndrome. BMJ 326:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Donate A, Estop AM, Giraldo J, Templado C (2016) Paternal age and numerical chromosome abnormalities in human spermatozoa. Cytogenet Genome Res. doi:10.1159/000446724

    PubMed  Google Scholar 

  • Down JLH (1866) Observations of an ethnic classification of idiots. Lond Hosp Rep 3:259–262

    Google Scholar 

  • Erickson JD, Bjerkedal TO (1981) Down syndrome associated with father’s age in Norway. J Med Genet 18:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald PH, Lycette RR (1961) Mosaicism inmaninvolving the autosome associated with mongolism. Heredity 16:509–512

    Article  Google Scholar 

  • Flores-Ramírez F, Palacios-Guerrero C, García-Delgado C, Morales-Jiménez AB, Arias-Villegas CM, Cervantes A, Morán-Barroso VF (2015) Cytogenetic profile in 1,921 cases of trisomy 21 syndrome. Arch Med Res 46:484–489

    Article  PubMed  Google Scholar 

  • Ghosh S, Hong CS, Feingold E, Ghosh P, Ghosh P, Bhaumik P, Dey SK (2011) Epidemiology of Down syndrome: new insight into the multidimensional interactions among genetic and environmental risk factors in the oocyte. Am J Epidemiol 174:1009–1016

    Article  PubMed  Google Scholar 

  • Ghosh S, Ghosh P, Dey SK (2014) Altered incidence of meiotic errors and Down syndrome birth under extreme low socioeconomic exposure in the Sundarban area of India. J Community Genet 5:119–124

    Article  PubMed  Google Scholar 

  • Grieco J, Pulsifer M, Seligsohn K, Skotko B, Schwartz A (2015) Down syndrome: cognitive and behavioral functioning across the lifespan. Am J Med Genet C Semin Med Genet 169:135–149

    Article  PubMed  Google Scholar 

  • Hassold T, Sherman S (2000) Down syndrome: Genetic recombination and the origin of the extra chromosome 21. Clin Genet 57:95–100

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand E, Källén B, Josefsson A, Gottvall T, Blomberg M (2014) Maternal obesity and risk of Down syndrome in the offspring. Prenat Diagn 34:310–315

    Article  PubMed  Google Scholar 

  • Hollis ND, Allen EG, Oliver TR, Tinker SW, Druschel C, Hobbs CA, O’Leary LA, Romitti PA, Royle MH, Torfs CP, Freeman SB, Sherman SL, Bean LJ (2013) Preconception folic acid supplementation and risk for chromosome 21 nondisjunction: a report from the National Down Syndrome Project. Am J Med Genet A 161A:438–444

    Article  PubMed  Google Scholar 

  • Huang T, Meschino WS, Okun N, Dennis A, Hoffman B, Lepage N, Rashid S, Aul R, Farrell SA (2013) The impact of maternal weight discrepancies on prenatal screening results for Down syndrome. Prenat Diagn 33:471–476

    Article  PubMed  Google Scholar 

  • Hultén MA, Patel SD, Tankimanova M, Westgren M, Papadogiannakis N, Jonsson AM, Iwarsson E (2008) On the origin of trisomy 21 down syndrome. Mol Cytogenet 1:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Hultén MA, Patel SD, Westgren M, Papadogiannakis N, Jonsson AM, Jonasson J, Iwarsson E (2010) On the paternal origin of trisomy 21 Down syndrome. Mol Cytogenet 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hultén MA, Öijerstedt L, Iwarsson E, Jonasson J (2014) Maternal germinal trisomy 21 in Down syndrome. J Clin Med 3:167–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter JE, Allen EG, Shin M, Bean LJ, Correa A, Druschel C, Hobbs CA, O’Leary LA, Romitti PA, Royle MH, Torfs CP, Freeman SB, Sherman SL (2013) The association of low socioeconomic status and the risk of having a child with Down syndrome: a report from the National Down Syndrome Project. Genet Med 15:698–705

    Article  PubMed  PubMed Central  Google Scholar 

  • James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB, Yi P, Tafoya DL, Swenson DH, Wilson VL, Gaylor DW (1999) Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 70:495–501

    CAS  PubMed  Google Scholar 

  • Jurewicz J, Radwan M, Sobala W, Radwan P, Jakubowski L, Hawuła W, Ulańska A, Hanke W (2014) Lifestyle factors and sperm aneuploidy. Reprod Biol 14:190–199

    Article  PubMed  Google Scholar 

  • Jurewicz J, Radwan M, Sobala W, Polańska K, Radwan P, Jakubowski L, Ulańska A, Hanke W (2015) The relationship between exposure to air pollution and sperm disomy. Environ Mol Mutagen 56:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jurewicz J, Radwan M, Sobala W, Gromadzińska J, Jabłońska E, Radwan P, Jakubowski L, Wąsowicz W, Hanke W (2016) Dietary patterns and the frequency of disomy in human sperm. Urology 93:86–91

    Article  PubMed  Google Scholar 

  • Karmiloff-Smith A, Al-Janabi T, D’Souza H, Groet J, Massand E, Mok K, Startin C, Fisher E, Hardy J, Nizetic D, Tybulewicz V, Strydom A (2016) The importance of understanding individual differences in Down syndrome. F1000 Res 23:5. doi:10.12688/f1000research.7506.1

    Google Scholar 

  • Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak Janzen J (2011) Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online 22:2–8

    Article  PubMed  Google Scholar 

  • Lamb NE, Feingold E, Savage A, Avramopoulos D, Freeman S, Gu Y, Hallberg A, Hersey J, Karadima G, Pettay D, Saker D, Shen J, Taft L, Mikkelsen M, Petersen MB, Hassold T, Sherman SL (1997) Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet 6:1391–1399

    Article  CAS  PubMed  Google Scholar 

  • Lejeune J, Gautier M, Turpin R (1959) Etude des chromosomes somatiqaues de neuf enfants mongoliens. Compte Rendu d’Acad Sci 248:1721–1722

    CAS  Google Scholar 

  • Levitas AS, Reid CS (2003) An angel with Down syndrome in a sixteenth century Flemish Nativity painting. Am J Med Genet A 116A:399–405

    Article  PubMed  Google Scholar 

  • Loane M, Morris JK, Addor MC, Arriola L, Budd J, Doray B, Garne E, Gatt M, Haeusler M, Khoshnood B, Klungsoyr Melve K, Latos-Bielenska A, McDonnell B, Mullaney C, O’Mahony M, Queisser-Wahrendorf A, Rankin J, Rissmann A, Rounding C, Salvador J, Tucker D, Wellesley D, Yevtushok L, Dolk H (2013) Twenty-year trends in the prevalence of down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening. Eur J Hum Genet 21:27–33

    Article  PubMed  Google Scholar 

  • Locke AE, Dooley KJ, Tinker SW, Cheong SY, Feingold E, Allen EG, Freeman SB, Torfs CP, Cua CL, Epstein MP, Wu MC, Lin X, Capone G, Sherman SL, Bean LJ (2010) Variation in folate pathway genes contributes to risk of congenital heart defects among individuals with Down syndrome. Genet Epidemiol 34:613–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Mccarter M, Lian G, Esposito G, Capoccia E, Delli-Bovi LC, Hecht J, Sheen V (2016) Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum Mol Genet 25:1714–1727

    Article  CAS  PubMed  Google Scholar 

  • Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Wilson EC, Mathews TJ (2012) Births: final data for 2010. Natl Vital Stat Rep 61:1–71

    Google Scholar 

  • Martinez-Frias ML (2005) The real earliest historical evidence of Down syndrome. Am J Med Genet A 132A:231

    Article  PubMed  Google Scholar 

  • Martínez-Frías ML, Pérez B, Desviat LR, Castro M, Leal F, Rodríguez L, Mansilla E, Martínez-Fernández ML, Bermejo E, Rodríguez-Pinilla E, Prieto D, Ugarte M, ECEMC Working Group (2006) Maternal polymorphisms 677C-T and 1298A-C of MTHFR, and 66A-G MTRR genes: is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having a child with Down syndrome? Am J Med Genet A 140:987–997

    Article  PubMed  Google Scholar 

  • Mateos MK, Barbaric D, Byatt SA, Sutton R, Marshall GM (2015) Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr 4:76–92

    PubMed  PubMed Central  Google Scholar 

  • Migliore L, Boni G, Bernardini R, Trippi F, Colognato R, Fontana I, Coppedè F, Sbrana I (2006) Susceptibility to chromosome malsegregation in lymphocytes of women who had a Down syndrome child in young age. Neurobiol Aging 27:710–716

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Migheli F, Coppedè F (2009) Susceptibility to aneuploidy in young mothers of Down syndrome children. ScientificWorldJournal 9:1052–1060

    Article  PubMed  Google Scholar 

  • Migliore L, Coppedè F, Fenech M, Thomas P (2011) Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 26:85–92

    Article  CAS  PubMed  Google Scholar 

  • Morris JK (2012) Trisomy 21 mosaicism and maternal age. Am J Med Genet Part A 158A:2482–2484

    Article  PubMed  Google Scholar 

  • Morris JK, Mutton DE, Alberman E (2002) Revised estimates of the maternal age specific live birth prevalence of Down’s syndrome. J Med Screen 9:2–6

    Article  CAS  PubMed  Google Scholar 

  • Morris JK, Wald NJ, Mutton DE, Alberman E (2003) Comparison of models of maternal age-specific risk for Down syndrome live births. Prenat Diagn 23:252–258

    Article  CAS  PubMed  Google Scholar 

  • Norwitz ER, Levy B (2013) Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol 6:48–62

    PubMed  PubMed Central  Google Scholar 

  • Obermann-Borst SA, van Driel LM, Helbing WA, de Jonge R, Wildhagen MF, Steegers EA, Steegers-Theunissen RP (2011) Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest 41:143–150

    Article  CAS  PubMed  Google Scholar 

  • Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N, Sherman SL (2008) New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet 4:e1000033

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver TR, Bhise A, Feingold E, Tinker S, Masse N, Sherman SL (2009) Investigation of factors associated with paternal nondisjunction of chromosome 21. Am J Med Genet A 149A:1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Oliver TR, Tinker SW, Allen EG, Hollis N, Locke AE, Bean LJ, Chowdhury R, Begum F, Marazita M, Cheung V, Feingold E, Sherman SL (2012) Altered patterns of multiple recombinant events are associated with nondisjunction of chromosome 21. Hum Genet 131:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Oliver TR, Middlebrooks CD, Tinker SW, Allen EG, Bean LJ, Begum F, Feingold E, Chowdhury R, Cheung V, Sherman SL (2014) An examination of the relationship between hotspots and recombination associated with chromosome 21 nondisjunction. PLoS One 9:e99560

    Article  PubMed  PubMed Central  Google Scholar 

  • Oster-Granite ML, Parisi MA, Abbeduto L, Berlin DS, Bodine C, Bynum D, Capone G, Collier E, Hall D, Kaeser L, Kaufmann P, Krischer J, Livingston M, McCabe LL, Pace J, Pfenninger K, Rasmussen SA, Reeves RH, Rubinstein Y, Sherman S, Terry SF, Whitten MS, Williams S, McCabe ER, Maddox YT (2011) Down syndrome: national conference on patient registries, research databases, and biobanks. Mol Genet Metab 104:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papavassiliou P, Charalsawadi C, Rafferty K, Jackson-Cook C (2015) Mosaicism for trisomy 21: a review. Am J Med Genet A 167A:26–39

    Article  PubMed  Google Scholar 

  • Patterson D (2009) Molecular genetic analysis of Down syndrome. Hum Genet 126:195–214

    Article  CAS  PubMed  Google Scholar 

  • Radwan M, Jurewicz J, Radwan P, Ulańska A, Jakubowski L, Hanke W (2015a) Occupational risk factors and frequency of sex chromosome disomy. Hum Fertil (Camb) 18:200–207

    Article  Google Scholar 

  • Radwan M, Jurewicz J, Wielgomas B, Piskunowicz M, Sobala W, Radwan P, Jakubowski L, Hawuła W, Hanke W (2015b) The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere 128:42–48

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Ferguson K, Kirkpatrick G, Vinning T, Chow V, Ma S (2016) Altered crossover distribution and frequency in spermatocytes of infertile men with Azoospermia. PLoS One 11:e0156817

    Article  PubMed  PubMed Central  Google Scholar 

  • Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361:1281–1289

    Article  PubMed  Google Scholar 

  • Rowsey R, Kashevarova A, Murdoch B, Dickenson C, Woodruff T, Cheng E, Hunt P, Hassold T (2013) Germline mosaicism does not explain the maternal age effect on trisomy. Am J Med Genet A 161A:2495–2503

    PubMed  Google Scholar 

  • Sailani MR, Santoni FA, Letourneau A, Borel C, Makrythanasis P, Hibaoui Y, Popadin K, Bonilla X, Guipponi M, Gehrig C, Vannier A, Carre-Pigeon F, Feki A, Nizetic D, Antonarakis SE (2015) DNA-methylation patterns in trisomy 21 using cells from monozygotic twins. PLoS One 10:e0135555

    Article  PubMed  PubMed Central  Google Scholar 

  • Schupf N, Kapell D, Nightingale B, Lee JH, Mohlenhoff J, Bewley S, Ottman R, Mayeux R (2001) Specificity of the fivefold increase in AD in mothers of adults with Down syndrome. Neurology 57:979–984

    Article  CAS  PubMed  Google Scholar 

  • Séguin E (1846) Traitement moral, hygiène et éducation des idiots et des autres enfants arrières. JB Baillière, Paris

    Google Scholar 

  • Serra-Juhé C, Cuscó I, Homs A, Flores R, Torán N, Pérez-Jurado LA (2015) DNA methylation abnormalities in congenital heart disease. Epigenetics 10:167–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling K, Neitzel H, Scherb H (2012) Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol 36:48–55

    Article  PubMed  Google Scholar 

  • Stahl A, Tourame P (2013) Trisomy 21 in visual art. Arch Pediatr 20:1342–1351

    Article  CAS  PubMed  Google Scholar 

  • Steiner B, Masood R, Rufibach K, Niedrist D, Kundert O, Riegel M, Schinzel A (2015) An unexpected finding: younger fathers have a higher risk for offspring with chromosomal aneuploidies. Eur J Hum Genet 23:466–472

    Article  PubMed  Google Scholar 

  • Stene J, Stene E, Stengel-Rutkowski S, Murken JD (1981) Paternal age and Down’s syndrome: data from prenatal diagnoses (DFG). Hum Genet 59:119–124

    Article  CAS  PubMed  Google Scholar 

  • Sukla KK, Jaiswal SK, Rai AK, Mishra OP, Gupta V, Kumar A, Raman R (2015) Role of folate-homocysteine pathway gene polymorphisms and nutritional cofactors in Down syndrome: A triad study. Hum Reprod 30:1982–1993

    Article  CAS  PubMed  Google Scholar 

  • Tannorella P, Stoccoro A, Tognoni G, Petrozzi L, Salluzzo MG, Ragalmuto A, Siciliano G, Haslberger A, Bosco P, Bonuccelli U, Migliore L, Coppedè F (2015) Methylation analysis of multiple genes in blood DNA of Alzheimer’s disease and healthy individuals. Neurosci Lett 600:143–147

    Article  CAS  PubMed  Google Scholar 

  • Templado C, Vidal F, Estop A (2011) Aneuploidy in human spermatozoa. Cytogenet Genome Res 133:91–99

    Article  CAS  PubMed  Google Scholar 

  • Victorino DB, Godoy MF, Goloni-Bertollo EM, Pavarino EC (2014) Meta-analysis of Methylenetetrahydrofolate reductase maternal gene in Down syndrome: increased susceptibility in women carriers of the MTHFR 677T allele. Mol Biol Rep 41:5491–5504

    Article  CAS  PubMed  Google Scholar 

  • Vineis P, Chuang SC, Vaissière T, Cuenin C, Ricceri F, Collaborators Genair-EPIC, Johansson M, Ueland P, Brennan P, Herceg Z (2011) DNA methylation changes associated with cancer risk factors and blood levels of vitamin metabolites in a prospective study. Epigenetics 6:195–201

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Thomas P, Xue J, Fenech M (2004) Folate deficiency induces aneuploidy in human lymphocytes in vitro-evidence using cytokinesis-blocked cells and probes specific for chromosomes 17 and 21. Mutat Res 551:167–180

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Feng L, Qiao FY, Lv JJ (2013) Functional variant in methionine synthase reductase decreases the risk of Down syndrome in China. J Obstet Gynaecol Res 39:511–515

    Article  PubMed  Google Scholar 

  • Warren AC, Chakravarti A, Wong C, Slaugenhaupt SA, Halloran SL, Watkins PC, Metaxotou C, Antonarakis SE (1987) Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science 237:652–654

    Article  CAS  PubMed  Google Scholar 

  • Weijerman ME, de Winter JP (2010) Clinical practice. The care of children with Down syndrome. Eur J Pediatr 169:1445–1452

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, Fisher EM, Strydom A (2015) A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 16:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Sherman SL, Hassold TJ, Allran K, Taft L, Pettay D, Khoury MJ, Erickson JD, Freeman SB (1999) Risk factors for trisomy 21: maternal cigarette smoking and oral contraceptive use in a population-based case-control study. Genet Med 1:80–88

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Gong T, Lin X, Qi L, Guo Y, Cao Z, Shen M, Du Y (2013) Maternal gene polymorphisms involved in folate metabolism and the risk of having a Down syndrome offspring: a meta-analysis. Mutagenesis 28:661–671

    Article  CAS  PubMed  Google Scholar 

  • Young SS, Eskenazi B, Marchetti FM, Block G, Wyrobek AJ (2008) The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Hum Reprod 23:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Tharapel AT, Shulman LP, Simpson JL, Elias S (1994) Molecular analysis to assign parental origin and distinguish de novo i(21q) from t(21q21q) in two Down syndrome fetuses. J Soc Gynecol Investig 1:128–130

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Coppedè.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppedè, F. Risk factors for Down syndrome. Arch Toxicol 90, 2917–2929 (2016). https://doi.org/10.1007/s00204-016-1843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1843-3

Keywords

Navigation