Skip to main content
Log in

The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAs:

Pyrrolizidine alkaloids

dehydro-PAs:

Dehydropyrrolizidine alkaloids

DHP:

(±)-6,7-Dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine

dG:

2′-Deoxyguanosine

dA:

2′-Deoxyadenosine

DHP-dG-1 and DHP-dG-2:

A pair of epimers of 7-(deoxyguanosin-N 2-yl)dehydrosupinidine adducts

DHP-dG-3 and DHP-dG-4:

A pair of epimers of 7-hydroxy-9-(deoxyguanosin-N 2-yl)dehydrosupinidine adducts

DHP-dA-1 and DHP-dA-2:

A pair of epimers of 7-(deoxyadenosin-N 6-yl)dehydrosupinidine adducts

DHP-dA-3 and DHP-dA-4:

A pair of epimers of 7-hydroxy-9-(deoxyadenosin-N 6-yl)dehydrosupinidine adducts

HPLC–ES–MS/MS:

High-performance liquid chromatography-electrospray ionization tandem mass spectrometry

MRM:

Multiple reaction monitoring

LOD:

Limit of detection

References

  • Beland FA, Huitfeldt HS, Poirier MC (1987) DNA adduct formation and removal during chronic administration of a carcinogenic aromatic amine. Prog Exp Tumor Res 31:33–41

    Article  CAS  PubMed  Google Scholar 

  • Boucheron JA, Richardson FC, Morgan PH, Swenberg JA (1987) Molecular dosimetry of O4-ethyldeoxythymidine in rats continuously exposed to diethylnitrosamine. Cancer Res 47:1577–1581

    CAS  PubMed  Google Scholar 

  • Buss P, Caviezel M, Lutz WK (1990) Linear dose–response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1. Carcinogenesis 11:2133–2135

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ramanathan R, Cerny RL, Rogan EG (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 94:10937–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou MW, Yan J, Nichols J, Xia Q, Beland FA, Chan PC, Fu PP (2003a) Correlation of DNA adduct formation and riddelliine-induced liver tumorigenesis in F344 rats and B6C3F1 mice. Cancer Lett 193:119–125

    Article  CAS  PubMed  Google Scholar 

  • Chou MW, Yan J, Williams L, Xia Q, Churchwell M, Doerge DR, Fu PP (2003b) Identification of DNA adducts derived from riddelliine, a carcinogenic pyrrolizidine alkaloid, in vitro and in vivo. Chem Res Toxicol 16:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Cook JW, Duffy E, Schoental R (1950) Primary liver tumours in rats following feeding with alkaloids of Senecio jacobaea. Br J Cancer 4:405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, Kanel GC (1999) Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 29:1779–1791

    Article  CAS  PubMed  Google Scholar 

  • Doerge DR, Gamboa da Costa G, McDaniel LP, Churchwell MI, Twaddle NC, Beland FA (2005) DNA adducts derived from administration of acrylamide and glycidamide to mice and rats. Mutat Res 580:131–141

    Article  CAS  PubMed  Google Scholar 

  • Edgar JA, Roeder E, Molyneux RJ (2002) Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J Agric Food Chem 50:2719–2730

    Article  CAS  PubMed  Google Scholar 

  • Edgar JA, Molyneux RJ, Colegate SM (2015) Pyrrolizidine alkaloids: potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease. Chem Res Toxicol 28:4–20

    Article  CAS  PubMed  Google Scholar 

  • Elvidge T, Matthews IP, Gregory C, Hoogendoorn B (2013) Feasibility of using biomarkers in blood serum as markers of effect following exposure of the lungs to particulate matter air pollution. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 31:1–44

    Article  CAS  PubMed  Google Scholar 

  • Fu PP, Chou MW, Xia Q, Yang YC, Yan J, Doerge DR, Chan PC (2001) Genotoxic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides-mechanisms leading to DNA adduct formation and tumorigenicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 19:353–385

    Article  Google Scholar 

  • Fu PP, Xia Q, Lin G, Chou MW (2004) Pyrrolizidine alkaloids—genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36:1–55

    Article  CAS  PubMed  Google Scholar 

  • Fu PP, Xia Q, Chou MW, Lin G (2007) Detection, hepatotoxicity, and tumorigenicity of pyrrolizidine alkaloids in Chinese herbal plants and herbal dietary supplements. J Food Drug Anal 15:400–415

    CAS  Google Scholar 

  • Fu PP, Chiang HM, Xia Q, Chen T, Chen BH, Yin JJ, Wen KC, Lin G, Yu H (2009) Quality assurance and safety of herbal dietary supplements. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:91–119

    Article  CAS  PubMed  Google Scholar 

  • Fu PP, Chou MW, Churchwell M, Wang Y, Zhao Y, Xia Q, Gamboa da Costa G, Marques MM, Beland FA, Doerge DR (2010) High-performance liquid chromatography electrospray ionization tandem mass spectrometry for the detection and quantitation of pyrrolizidine alkaloid-derived DNA adducts in vitro and in vivo. Chem Res Toxicol 23:637–652

    Article  CAS  PubMed  Google Scholar 

  • Fu PP, Xia Q, Zhao Y, Wang S, Yu H, Chiang HM (2013) Phototoxicity of herbal plants and herbal products. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 31:213–255

    Article  CAS  PubMed  Google Scholar 

  • Gray KK, Worthy MN, Juelich TL, Agar SL, Poussard A, Ragland D, Freiberg AN, Holbrook MR (2012) Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse. PloS Neql Trop Dis 6:e1529

    Article  CAS  Google Scholar 

  • Gupta RC (1984) Nonrandom binding of the carcinogen N-hydroxy-2-acetylaminofluorene to repetitive sequences of rat liver DNA in vivo. Proc Natl Acad Sci USA 81:6943–6947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong HL, Ton TV, Devereux TR, Moomaw C, Clayton N, Chan P, Dunnick JK, Sills RC (2003) Chemical-specific alterations in ras, p53, and beta-catenin genes in hemangiosarcomas from B6C3F1 mice exposed to o-nitrotoluene or riddelliine for 2 years. Toxicol Appl Pharmacol 191:227–234

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene, in IARC monographs on the evaluation of carcinogenic risks of chemicals to humans. IARC Press, Lyon, pp 153–168

    Google Scholar 

  • Jiang X, Wang SG, Zhao YW, Xia QS, Cai LN, Sun X, Fu PP (2015) Absolute configuration, stability, and interconversion of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine valine adducts and their phenylthiohydantoin derivatives. J Food Drug Anal 23:318–326

    Article  CAS  Google Scholar 

  • Kleihues P, Bucheler J (1977) Long-term persistence of O6-methylguanine in rat brain DNA. Nature 269:625–626

    Article  CAS  PubMed  Google Scholar 

  • Li N, Xia Q, Ruan JQ, Fu PP, Lin G (2011) Hepatotoxicity and tumorigenicity induced by metabolic activation of pyrrolizidine alkaloids in herbs. Curr Drug Metab 12:823–834

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Tai WCS, Xue JY, Wong WY, Lu C, Ruan JQ, Li N, Wan TF, Chan WY, Hsiao WLW, Lin G (2015) Proteomic study of pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome in rats. Chem Res Toxicol 28:1715–1727

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Nnane IP, Cheng TY (1999) The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats. Toxicon 37:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Cui YY, Hawes EM (2000) Characterization of rat liver microsomal metabolites of clivorine, an hepatotoxic otonecine-type pyrrolizidine alkaloid. Drug Metab Dispos 28:1475–1483

    CAS  PubMed  Google Scholar 

  • Lin G, Wang JY, Li N, Li M, Gao H, Ji Y, Zhang F, Zhou Y, Ye Y, Xu HX, Zheng J (2011) Hepatic sinusoidal obstruction syndrome associated with Gynura segetum. J Hepatol 54:666–673

    Article  PubMed  Google Scholar 

  • Ma L, Zhao HQ, Xia QS, Cai LN, Fu PP (2015) Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: formation of reactive oxygen species and induction of lipid peroxidation. J Food Drug Anal 23:577–586

    Article  CAS  Google Scholar 

  • Mei N, Chou MW, Fu PP, Heflich RH, Chen T (2004a) Differential mutagenicity of riddelliine in liver endothelial and parenchymal cells of transgenic big blue rats. Cancer Lett 215:151–158

    Article  CAS  PubMed  Google Scholar 

  • Mei N, Heflich RH, Chou MW, Chen T (2004b) Mutations induced by the carcinogenic pyrrolizidine alkaloid riddelliine in the liver cII gene of transgenic big blue rats. Chem Res Toxicol 17:814–818

    Article  CAS  PubMed  Google Scholar 

  • Morine Y, Shimada M, Utsunomiya T (2014) Evaluation and management of hepatic injury induced by oxaliplatin-based chemotherapy in patients with hepatic resection for colorectal liver metastasis. Hepatol Res 44:59–69

    Article  CAS  PubMed  Google Scholar 

  • National Institutes of Health, Research Triangle Park, NC; International Programme on Chemical Safety (IPCS) (1989) Pyrrolizidine alkaloids health and safety guide, health and safety criteria guide 26. WHO, Geneva

    Google Scholar 

  • National Toxicology Program (1978) TR-39 bioassay of lasiocarpine for possible carcinogenicity (CAS No. 303-34-4), NIH Publication No. 78-839, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC

  • National Toxicology Program (2003) TR-508 toxicology and carcinogenesis studies of riddelliine (CAS No. 23246-96-0) in F344/N rats and B6C3F1 mice (GaVage Studies), NIH Publication No. 03-4442, U.S. Department of Health and Human Services, Public Health Service

  • Oancea I, Png CW, Das I, Lourie R, Winkler IG, Eri R, Subramaniam N, Jinnah HA, McWhinney BC, Levesque JP, McGuckin MA, Duley JA, Florin TH (2013) A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut 62:594–605

    Article  CAS  PubMed  Google Scholar 

  • Rangan GK, Tesch GH (2007) Quantification of renal pathology by image analysis. Nephrology 12:553–558

    Article  PubMed  Google Scholar 

  • Roeder E (2000) Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55:711–726

    CAS  PubMed  Google Scholar 

  • Ruan JQ, Liao C, Ye Y, Lin G (2014a) Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids. Chem Res Toxicol 27:7–16

    Article  CAS  PubMed  Google Scholar 

  • Ruan JQ, Yang MB, Fu PP, Ye Y, Lin G (2014b) Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis. Chem Res Toxicol 27:1030–1039

    Article  CAS  PubMed  Google Scholar 

  • Ruan JQ, Gao H, Li N, Xue JY, Chen J, Ke CQ, Ye Y, Fu PP, Zheng J, Wang JY, Lin G (2015) Blood pyrrole-protein adducts—a biomarker of pyrrolizidine alkaloid-induced liver injury in humans. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33:404–421

    Article  CAS  PubMed  Google Scholar 

  • Schoental R, Head MA, Peacock PR (1954) Senecio alkaloids; primary liver tumours in rats as a result of treatment with (1) a mixture of alkaloids from S. jacobaea Lin.; (2) retrorsine; (3) isatidine. Br J Cancer 8:458–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer B, Grunberger D, Sinha N (1983) Molecular biology of mutagens and carcinogens. Plenum Press, New York

    Book  Google Scholar 

  • Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8:95–116

    CAS  PubMed  Google Scholar 

  • Talaska G, Jaeger M, Reilman R, Collins T, Warshawsky D (1996) Chronic, topical exposure to benzo[a]pyrene induces relatively high steady-state levels of DNA adducts in target tissues and alters kinetics of adduct loss. Proc Natl Acad Sci USA 93:7789–7793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker VE, Wu KY, Upton PB, Ranasinghe A, Scheller N, Cho MH, Vergnes JS, Skopek TR, Swenberg JA (2000) Biomarkers of exposure and effect as indicators of potential carcinogenic risk arising from in vivo metabolism of ethylene to ethylene oxide. Carcinogenesis 21:1661–1669

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Fu PP, Chou MW (2005a) Metabolic activation of the tumorigenic pyrrolizidine alkaloid, retrorsine, leading to DNA adduct formation in vivo. Int J Environ Res Public Health 2:74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Yan J, Beger RD, Fu PP, Chou MW (2005b) Metabolic activation of the tumorigenic pyrrolizidine alkaloid, monocrotaline, leading to DNA adduct formation in vivo. Cancer Lett 226:27–35

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Xia Q, Li M, Wang S, Zhao Y, Tolleson WH, Yin JJ, Fu PP (2014) Metabolic activation of pyrrolizidine alkaloids leading to phototoxicity and photogenotoxicity in human HaCaT keratinocytes. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32:362–384

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Chou MW, Kadlubar FF, Chan PC, Fu PP (2003) Human liver microsomal metabolism and DNA adduct formation of the tumorigenic pyrrolizidine alkaloid, riddelliine. Chem Res Toxicol 16:66–73

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Chou MW, Lin G, Fu PP (2004) Metabolic formation of DHP-derived DNA adducts from a representative otonecine type pyrrolizidine alkaloid clivorine and the extract of Ligularia hodgsonnii hook. Chem Res Toxicol 17:702–708

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Chou MW, Edgar JA, Doerge DR, Fu PP (2006) Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, lasiocarpine. Cancer Lett 231:138–145

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Zhao Y, Von Tungeln LS, Doerge DR, Lin G, Cai L, Fu PP (2013) Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity. Chem Res Toxicol 26:1384–1396

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Ma L, He X, Cai L, Fu PP (2015) 7-glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids. Chem Res Toxicol 28:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yang YC, Yan J, Doerge DR, Chan PC, Fu PP, Chou MW (2001) Metabolic activation of the tumorigenic pyrrolizidine alkaloid, riddelliine, leading to DNA adduct formation in vivo. Chem Res Toxicol 14:101–109

    Article  CAS  PubMed  Google Scholar 

  • Yang MB, Ruan JQ, Fu PP, Lin G (2015) Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity. Chem-Biol Interact 24:119–126

    Google Scholar 

  • Young JF, Luecke RH, Doerge DR (2007) Physiologically based pharmacokinetic/pharmacodynamic model for acrylamide and its metabolites in mice, rats, and humans. Chem Res Toxicol 20:388–399

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhang Z, Chen L, Kong D, Zhang X, Lu C, Lu Y, Zheng S (2014) Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J Cell Mol Med 18:1392–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xia Q, Gamboa da Costa G, Yu H, Cai L, Fu PP (2012) Full structure assignments of pyrrolizidine alkaloid DNA adducts and mechanism of tumor initiation. Chem Res Toxicol 25:1985–1996

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Balbo S, Wang M, Upadhyaya P, Khariwala SS, Villalta PW, Hecht SS (2013) Quantitation of pyridyloxobutyl-DNA adducts in tissues of rats treated chronically with (R)- or (S)-N’-nitrosonornicotine (NNN) in a carcinogenicity study. Chem Res Toxicol 26:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang S, Xia Q, Gamboa da Costa G, Doerge DR, Cai L, Fu PP (2014) Reaction of dehydropyrrolizidine alkaloids with valine and hemoglobin. Chem Res Toxicol 27:1720–1731

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by Research Grant Council of Hong Kong (GRF Grant Nos. 471310 and 469712), CUHK Direct Grants (4054047 and 4054134), CUHK One-off Funding for Joint Lab/Research Collaboration (Project Code: 3132968), and CUHK School of Biomedical Sciences–Seed Fund for Joint Establishments. This article is not an official U.S. Food and Drug Administration (FDA) guidance or policy statement. No official support or endorsement by the U.S. FDA is intended or should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter P. Fu or Ge Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Lin Zhu and Junyi Xue have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Xue, J., Xia, Q. et al. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 91, 949–965 (2017). https://doi.org/10.1007/s00204-016-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1713-z

Keywords

Navigation