Skip to main content

Advertisement

Log in

Deoxynivalenol: signaling pathways and human exposure risk assessment—an update

  • Review
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Deoxynivalenol (DON) is a group B trichothecene and a common contaminant of crops worldwide. This toxin is known to cause a spectrum of diseases in animals and humans such as vomiting and gastroenteritis. Importantly, DON could inhibit the synthesis of protein and nucleonic acid and induce cell apoptosis in eukaryote cells. The transduction of signaling pathways is involved in the underlying mechanism of the cytotoxicity of DON. Mitogen-activated protein kinase and Janus kinase/signal transducer and activator of transcription seem to be two important signaling pathways and induce the inflammatory response by modulating the binding activates of specific transcription factors. This review mainly discussed the toxic mechanism of DON from the vantage point of signaling pathways and also assessed the profiles of DON and its metabolites in humans. Importantly, we conducted a human exposure risk assessment of DON from cereals, cereal-based foods, vegetables, water, and animal-derived foods in different countries. Some regular patterns of DON occurrence in these countries are suggested based on an analysis of global contamination with DON. This review should provide further insight for the toxic mechanism study of DON and human exposure risk assessment, thereby facilitating mycotoxin control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DON:

Deoxynivalenol

DOM-1:

12,13-De-epoxy-DON

PKR:

Double-stranded, RNA-activated protein kinase R

Hck:

Hematopoietic cell kinase

MAPKs:

Mitogen-activated protein kinases

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

DON-15-GlcA:

DON-15-glucuronide

SAPK/JNK:

Stress-activated protein kinase/c-Jun N-terminal kinase

CREB:

CAMP response element-binding protein

ZON:

Zearalenone

WWTP:

Waste water treatment plant

References

  • Baltriukine D, Kalvelyte A, Bukelskiene V (2007) Induction of apoptosis and activation of JNK and p38 MAPK pathways in deoxynivalenol-treated cell lines. Altern Lab Anim 35:53–59

    Google Scholar 

  • Bensassi F, El Golli-Bennour E, Abid-Essefi S, Bouaziz C, Hajlaoui MR, Bacha H (2009) Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicology 264:104–109

    Article  PubMed  CAS  Google Scholar 

  • Bensassi F, Zaied C, Abid S, Hajlaoui MR, Bacha H (2010) Occurrence of deoxynivalenol in durum wheat in Tunisia. Food Control 21:281–285

    Article  CAS  Google Scholar 

  • Bensassi F, Gallerne C, Sharaf El Dein O, Lemaire C, Hajlaoui MR, Bacha H (2012) Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food Chem Toxicol 50(5):1680–1689

    Article  PubMed  CAS  Google Scholar 

  • Bin-Umer MA, McLaughlin JE, Basu D, McCormick S, Tumer NE (2011) Trichothecene mycotoxins inhibit mitochondrial translation-Implication for the mechanism of toxicity. Toxins 3:1484–1501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brockmeyer A, Thielert G (2004) Deoxynivalenol (DON) in Hartweizen. Mycotoxin Res 20:37–41

    Article  PubMed  CAS  Google Scholar 

  • Bucheli TD, Wettstein FE, Hartmann N, Erbs M, Vogelgsang S, Forrer HR, Schwarzenbach RP (2008) Fusarium mycotoxins: overlooked aquatic micropollutants? J Agric Food Chem 56:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Cano-Sancho G, Valle-Algarra FM, Jiménez M, Burdaspal P, Legarda TM, Ramos AJ, Sanchis VS, Marín S (2011) Presence of trichothecenes and co-occurrence in cereal-based food from Catalonia (Spain). Food Control 22:490–495

    Article  CAS  Google Scholar 

  • CAST (2003) Potential economic costs of mycotoxins in the United States. In: Mycotoxins: risks in plant, animal, and human systems. Task Force report no. 139, pp 136–142. Council for Agricultural Science and Technology, Ames, IA

  • Castillo MÁ, Montes R, Navarro A, Segarra R, Cuesta G, Hernández E (2008) Occurrence of deoxynivalenol and nivalenol in Spanish corn-based food products. J Food Compos Anal 21:423–427

    Article  CAS  Google Scholar 

  • Charmley E, Trenholm HL, Thompson BK, Vudathala D, Nicholson JW, Prelusky DB, Charmley LL (1993) Influence of level of deoxynivalenol in the diet of dairy cows on feed intake, milk production, and its composition. J Dairy Sci 76:3580–3587

    Article  PubMed  CAS  Google Scholar 

  • Chaytor AC, Hansen JA, van Heugten E, See MT, Kim SW (2011) Occurrence and decontamination of mycotoxins in swine feed. Asian-Aust J Anim Sci 24:723–738

    Article  CAS  Google Scholar 

  • Chung YJ, Zhou HR, Pestka JJ (2003) Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol 193(2):188–201

    Article  PubMed  CAS  Google Scholar 

  • Côté LM, Dahlem AM, Yoshizawa T, Swanson SP, Buck WB (1986) Excretion of deoxynivalenol and its metabolite in milk, urine, and feces of lactating dairy cows. J Dairy Sci 69:2416–2423

    Article  PubMed  Google Scholar 

  • Cui L, Selvaraj NS, Xing F, Zhao Y, Zhou L, Liu Y (2013) A minor survey of deoxynivalenol in Fusarium wheat from Yangtze–Huaihe river basin region in China. Food Control 3:469–473

    Article  Google Scholar 

  • Curtui V, Seidler C, Schneider E, Usleber E (2005) Determination of deoxynivalenol and deepoxy deoxynivalenol in milk. Mycotoxin Res 21:40–42

    Article  PubMed  CAS  Google Scholar 

  • Dänicke S, Valenta H, Ueberschär KH, Matthes S (2007) On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolysing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. Br Poult Sci 48:39–48

    Article  PubMed  Google Scholar 

  • Del Ponte EM, Garda-Buffon J, Badiale-Furlong E (2012) Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemic in southern Brazil. Food Chem 132:1087–1091

    Article  Google Scholar 

  • El-Banna A, Hamilton RMG, Scott PM, Trenholm HL (1983) Nontransmission of deoxynivalenol (vomitoxin) to eggs and meat in chickens fed deoxynivalenol-contaminated diets. J Agric Food Chem 31:1381–1384

    Article  PubMed  CAS  Google Scholar 

  • Ennouari A, Sanchis V, Marín S, Rahouti M, Zinedine A (2013) Occurrence of deoxynivalenol in durum wheat from Morocco. Food Control 32:115–118

    Article  CAS  Google Scholar 

  • Eriksen GS, Alexander J (eds) (1998) Fusarium toxins in cereals—a risk assessment. Nordic Council of Ministers, TemaNord 502, Copenhagen, pp 7–44

  • European Commission (2005) Commission Regulation (EC) No. 856/2005 of 6 June 2005 amending Regulation (EC) No. 466/2001 as regards Fusarium toxins. Off J Eur Union L 143:3–8

  • European Commission (2006a) Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L 364/17

  • European Commission ((2006b)) Commission Regulation (EC) No. 401/2006 of 23 February 2006. Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off J Eur Union L 70:12e34

  • Flannery BM, He K, Pestka JJ (2013) Deoxynivalenol-induced weight loss in the diet-induced obese mouse is reversible and PKR-independent. Toxicol Lett 221:9–14

    Article  PubMed  CAS  Google Scholar 

  • González-Osnaya L, Cortés C, Soriano JM, Moltó JC, Mañs J (2011) Occurrence of deoxynivalenol and T-2 toxin in bread and pasta commercialised in Spain. Food Chem 124:156–161

    Article  Google Scholar 

  • Goyarts T, Dänicke S, Valenta H, Ueberschär KH (2007) Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat to pigs. Food Addit Contam 24:369–380

    Article  PubMed  CAS  Google Scholar 

  • Gray JS, Bae HK, Li JC, Lau AS, Pestka JJ (2008) Double-stranded RNA-activated protein kinase mediates induction of interleukin-8 expression by deoxynivalenol, Shiga toxin 1, and ricin in monocytes. Toxicol Sci 105:322–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He C, Fan Y, Wang Y, Huang C, Wang X, Zhang H (2010) Combinative effects of aflatoxin B1 and deoxynivalenol on Cyprinus carpio in feed. J Nanjing Agric Univ 33:85–89

    CAS  Google Scholar 

  • He K, Zhou HR, Pestka JJ (2012) Targets and Intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol Sci 127(2):382–390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirano S, Kataoka T (2013) Deoxynivalenol induces ectodomain shedding of TNF receptor 1 and thereby inhibits the TNF-α-induced NF-κB signaling pathway. Eur J Pharmacol 701:144–151

    Article  PubMed  CAS  Google Scholar 

  • Jajić I, Jurić V, Abramović B (2008a) First survey of deoxynivalenol occurrence in crops in Serbia. Food Control 19:545–550

    Article  Google Scholar 

  • Jajić I, Jurić V, Glamočić D, Abramović B (2008b) Occurrence of deoxynivalenol in maize and wheat in Serbia. Int J Mol Sci 9:2114–2126

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakšić S, Abramović B, Jajić I, Baloš MŽ, Mihaljev Ž, Despotović V, Šojić D (2012) Co-occurrence of fumonisins and deoxynivalenol in wheat and maize harvested in Serbia. Bull Environ Contam Toxicol 89:615–619

    Article  PubMed  Google Scholar 

  • Keese C, Meyer U, Valenta H, Schollenberger M, Starke A, Weber IA, Rehage J, Breves G, Dänicke S (2008) No carry over of unmetabolised deoxynivalenol in milk of dairy cows fed high concentrate proportions. Mol Nutr Food Res 52:1514–1529

    Article  PubMed  CAS  Google Scholar 

  • Li D, Ye Y, Deng L, Ma H, Fan X, Zhang Y, Yan H, Deng X, Li Y, Ma Y (2013) Gene expression profiling analysis of deoxynivalenol-induced inhibition of mouse thymic epithelial cell proliferation. Environ Toxicol Pharmacol 36:557–566

    Article  PubMed  Google Scholar 

  • Lucioli J, Pinton P, Callu P, Laffitte J, Grosjean F, Kolf-Clauw M, Oswald IP, Bracarense AP (2013) The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments. Toxicon 66:31–36

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Zhang A, Shi Z, He C, Ding J, Wang X, Ma J, Zhang H (2012) A mitochondria-mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicol In Vitro 26:414–420

    Article  PubMed  CAS  Google Scholar 

  • Malachova A, Dzuman Z, Veprikova Z, Vaclavikova M, Zachariasova M, Hajslova J (2011) Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J Agric Food Chem 59:12990–12997

    Article  PubMed  CAS  Google Scholar 

  • Martins HM, Almeida I, Marques MF, Guerra MM (2008a) Fumonisins and deoxynivalenol in corn-based food products in Portugal. Food Chem Toxicol 46:2585–2587

    Article  Google Scholar 

  • Martins HM, Marques M, Almeida I, Guerra MM, Bernardo F (2008b) Mycotoxins in feedstuffs in Portugal: an overview. Mycotoxin Res 24:19–23

    Article  PubMed  CAS  Google Scholar 

  • Meky FA, Turner PC, Ashcroft AE, Miller JD, Qiao YL, Roth MJ, Wild CP (2003) Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem Toxicol 41:265–273

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Ansari KM, Dwivedi PD, Pandey HP, Das M (2013) Occurrence of deoxynivalenol in cereals and exposure risk assessment in Indian population. Food Control 30:549–555

    Article  CAS  Google Scholar 

  • Moazami EF, Jinap S (2009) Nature occurrence of deoxynivalenol (DON) in wheat noodles consumed in Malaysia. Microchem J 93:25–28

    Article  CAS  Google Scholar 

  • Montes R, Segarra R, Castillo MÁ (2012) Trichothecenes in breakfast cereals from the Spanish retail market. J Food Compos Anal 27:38–44

    Article  CAS  Google Scholar 

  • Moon Y, Pestka JJ (2002) Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicol Sci 69:373–382

    Article  PubMed  CAS  Google Scholar 

  • Ok HE, Kim DM, Kim D, Chung SH, Chung MS, Park KH, Chun HS (2014) Mycobiota and natural occurrence of aflatoxin, deoxynivalenol, nivalenol and zearalenone in rice freshly harvested in South Korea. Food Control 37:284–291

    Article  CAS  Google Scholar 

  • Omurtag GZ, Beyoğlu D (2007) Occurrence of deoxynivalenol (vomitoxin) in beer in Turkey detected by HPLC. Food Control 18:163–166

    Article  CAS  Google Scholar 

  • Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam A 25:1128–1140

    Article  CAS  Google Scholar 

  • Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153(1):61–73

    Article  PubMed  CAS  Google Scholar 

  • Pestka JJ, Uzarski RL, Islam Z (2005) Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology 206:207–219

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Braicu C, Nougayrede JP, Laffitte J, Taranu I, Oswald IP (2010) Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. J Nutr 140:1956–1962

    Article  PubMed  CAS  Google Scholar 

  • Pleadin J, Sokolović M, Perši N, Zadravec M, Jaki V, Vulić A (2012) Contamination of maize with deoxynivalenol and zearalenone in Croatia. Food Control 28:94–98

    Article  CAS  Google Scholar 

  • Polišenská I, Tvarůžek L (2007) Relationships between deoxynivalenol content, presence of kernels infected by Fusarium spp. pathogens and visually scabby kernels in Czech wheat in 2003–2005. Cereal Res Commun 35:1437–1448

    Article  Google Scholar 

  • Polišenská I, Sýkorová S, Matějová E, Chrpová J, Nedomová L (2008) Occurrence of deoxynivalenol in Czech grain. World Mycotoxin J 1:299–305

    Article  Google Scholar 

  • Prelusky DB, Trenholm HL, Lawrence GA, Scott PM (1984) Nontransmission of deoxynivalenol (vomitoxin) to milk following oral administration to dairy cows. J Environ Sci Health B 19:593–609

    Article  PubMed  CAS  Google Scholar 

  • Prelusky DB, Trenholm HL, Hamilton RMG, Miller JD (1987) Transmission of [14C] deoxynivalenol to eggs following oral adminstration to laying hens. J Agric Food Chem 35:182–186

    Article  CAS  Google Scholar 

  • Prelusky DB, Hamilton RM, Trenholm HL (1989) Transmission of residues to eggs following long-term administration of 14C-labelled deoxynivalenol to laying hens. Poult Sci 68:744–748

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Carrasco Y, Ruiz MJ, Font G, Berrada H (2013) Exposure estimates to Fusarium mycotoxins through cereals intake. Chemosphere 93:2297–2303

    Article  PubMed  Google Scholar 

  • Rodríguez-Carrasco Y, Moltó JC, Berrada H, Mañs J (2014) A survey of trichothecenes, zearalenone and patulin in milled grain-based products using GC–MS/MS. Food Chem 146:212–219

    Article  PubMed  Google Scholar 

  • Rubert J, Soriano JM, Mañes J, Soler C (2011) Rapid mycotoxin analysis in human urine: a pilot study. Food Chem Toxicol 49:2299–2304

    Article  PubMed  CAS  Google Scholar 

  • Sarkanj B, Warth B, Uhlig S, Abia WA, Sulyok M, Klapec T, Krska R, Banjari I (2013) Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem Toxicol 62:231–237

    Article  PubMed  CAS  Google Scholar 

  • Schenzel J, Schwarzenbach RP, Bucheli TD (2010) Multi-residue screening method to quantify mycotoxins in aqueous environmental samples. J Agric Food Chem 58:11207–11217

    Article  PubMed  CAS  Google Scholar 

  • Schenzel J, Forre HR, Vogelgsang S, Hungerbühler K, Bucheli TD (2012a) Mycotoxins in the environment: I. Production and emission from an agricultural test field. Environ Sci Technol 46:13067–13075

    Article  PubMed  CAS  Google Scholar 

  • Schenzel J, Hungerbühler K, Bucheli TD (2012b) Mycotoxins in the environment: II. Occurrence and origin in Swiss river. Environ Sci Technol 46:13076–13084

    Article  PubMed  CAS  Google Scholar 

  • Seeling K, Dänicke S, Valenta H, Van Egmond HP, Schothorst RC, Jekel AA, Lebzien P, Schollenberger M, Razzazi-Fazeli E, Flachowsky G (2006) Effects of Fusarium toxin-contaminated wheat and feed intake level on the biotransformation and carry-over of deoxynivalenol in dairy cows. Food Addit Contam 23:1008–1020

    Article  PubMed  CAS  Google Scholar 

  • Sergent T, Parys M, Garsou S, Pussemier L, Schneider YJ, Larondelle Y (2006) Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol Lett 164:167–176

    Article  PubMed  CAS  Google Scholar 

  • Shephard GS, van der Westhuizen L, Katerere DR, Herbst M, Pineiro M (2010) Preliminary exposure assessment of deoxynivalenol and patulin in South Africa. Mycotoxin Res 26:181–185

    Article  PubMed  CAS  Google Scholar 

  • Shephard GS, Burger HM, Gambacorta L, Gong YY, Krska R, Rheeder JP, Solfrizzo M, Srey C, Sulyok M, Visconti A, Warth B, van der Westhuizen L (2013) Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem Toxicol 62:217–225

    Article  PubMed  CAS  Google Scholar 

  • Šliková S, Šudyová V, Gregová E (2008) Deoxynivalenol in wheat from the growing areas of Slovakia. Cereal Res Commun 36:279287

    Google Scholar 

  • Sodhi HK, Sumbali G (2012) Occurrence of zearalenone, zearalenol and deoxynivalenol in some market samples of dried vegetables in J&K State. Proc Natl Acad Sci India Sect B Bio Sci 82:531–535

    Article  CAS  Google Scholar 

  • Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 5:504–523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun LY, Li Q, Meng FG, Fu Y, Zhao ZJ, Wang LH (2012) T-2 toxin contamination in grains and selenium concentration in drinking water and grains in Kaschin–Beck disease endemic areas of Qinghai Province. Biol Trace Elem Res 150:371–375

    Article  PubMed  Google Scholar 

  • Sypecka Z, Kelly M, Brereton P (2004) Deoxynivalenol and zearalenone residues in eggs of laying hens fed with a naturally contaminated diet: effects on egg production and estimation of transmission rates from feed to eggs. J Agric Food Chem 52:5463–5471

    Article  PubMed  CAS  Google Scholar 

  • Tangi EK, Waegeneers N, Overmeire IV, Goeyens L, Pussemier L (2009) Mycotoxin analysis in some home produced eggs in Belgium reveal small contribution to the total daily intake. Sci Total Environ 407:4411–4418

    Article  Google Scholar 

  • Tittlemier SA, Gaba D, Chan JM (2013) Monitoring of Fusarium trichothecenes in Canadian cereal grain shipments from 2010–2012. J Agric Food Chem 61:7412–7418

    Article  PubMed  CAS  Google Scholar 

  • Tran ST, Smith TK (2013) A survey of free and conjugated deoxynivalenol in the 2009, 2010 and 2011 cereal crops in Australia. Anim Prod Sci 53:407–412

    Article  CAS  Google Scholar 

  • Tran ST, Smith T, Girgis GN (2012) A survey of free and conjugated deoxynivalenol in the 2008 corn crop in Ontario, Canada. J Sci Food Agric 92:37–41

    Article  PubMed  CAS  Google Scholar 

  • Turner PC, Rothwell JA, White KL, Gong Y, Cade JE, Wild CP (2008a) Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom. Environ Health Perspect 116:21–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Turner PC, Burley VJ, Rothwell JA, White KL, Cade JE, Wild CP (2008b) Dietary wheat reduction decreases the level of urinary deoxynivalenol in UK adults. J Expo Sci Environ Epidemiol 18:392–399

    Article  PubMed  CAS  Google Scholar 

  • Turner CP, Taylor EF, White KL, Cade JE, Wild CP (2009) A comparison of 24 h urinary deoxynivalenol with recent v. average cereal consumption for UK adults. Br J Nutr 102:1276–1279

    Article  PubMed  CAS  Google Scholar 

  • Turner PC, Hopton RP, Lecluse Y, White KLM, Fisher J, Lebailly P (2010) Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from Normandy, France. J Agric Food Chem 58:5206–5212

    Article  PubMed  CAS  Google Scholar 

  • Turner PC, Ji BT, Shu XO, Zheng W, Chow WH, Gao YT, Hardie LJ (2011a) A biomarker survey of urinary deoxynivalenol in China: the Shanghai Women’s Health Study. Food Addit Contam A 28(9):1220–1223

    Article  CAS  Google Scholar 

  • Turner PC, Hopton RP, White KLM, Fisher J, Cade JE, Wild CP (2011b) Assessment of deoxynivalenol metabolite profiles in UK adults. Food Chem Toxicol 49:132–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tutelyan VA (2004) Deoxynivalenol in cereals in Russia. Toxicol Lett 153:173–179

    Article  PubMed  CAS  Google Scholar 

  • Valenta H, Dänicke S (2005) Study on the transmission of deoxynivalenol and de-epoxy-deoxynivalenol into eggs of laying hens using a high-performance liquid chromatography-ultraviolet method with clean-up by immunoaffinity columns. Mol Nutr Food Res 49:779–785

    Article  PubMed  CAS  Google Scholar 

  • Velić N, Pavlović H, Ćosić J, Kanižai G, Krstanović V (2007) A survey of Fusarium graminearum and deoxynivalenol contamination of malt barley from the crop year 2004 in eastern Croatia. Cereal Res Commun 35:1293–1296

    Article  Google Scholar 

  • Vidal A, Marín S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem Toxicol 53:133–138

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Liu Q, Ihsan A, Huang L, Dai M, Hao H, Cheng G, Liu Z, Wang Y, Yuan Z (2012) JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci 127:412–424

    Article  PubMed  CAS  Google Scholar 

  • Warth B, Sulyok M, Fruhmann P, Berthiller F, Schuhmacher R, Hametner C, Adam G, Fröhlich J, Krska R (2012) Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method. Toxicol Lett 211:85–90

    Article  PubMed  CAS  Google Scholar 

  • Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R (2013) New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 220:88–94

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Dohnal V, Huang L, Kuča K, Yuan Z (2010) Metabolic pathways of trichothecenes. Drug Metab Rev 42:250–267

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Lohrey L, Cramer B, Yuan Z, Humpf HU (2011) Impact of physicochemical parameters on decomposition of deoxynivalenol during extrusion cooking of wheat grits. J Agric Food Chem 59:12480–12485

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Zhang G, Guo C, Zhang Y, Zhang Y, Zheng J, Yang H, Yang D, He L, Zeng Z, Fang B (2014) Simultaneous determination of major type-B trichothecenes and the de-epoxy metabolite of deoxynivalenol in chicken tissues by HPLC-MS/MS. J Sep Sci 37:642–649

    Article  PubMed  CAS  Google Scholar 

  • Yang GH, Jarvis BB, Chung YJ, Pestka JJ (2000) Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149–160

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Chung DH, Kim YB, Choi YH, Moon Y (2008) Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAFI mRNA stability in human epithelial cells. Toxicology 243:145–154

    Article  PubMed  CAS  Google Scholar 

  • Zachariasova M, Vaclavikova M, Lacina O, Vaclavik L, Hajslova J (2012) Deoxynivalenol oligoglycosides: new “masked” Fusarium toxins occurring in malt, beer, and breadstuff. J Agric Food Chem 60:9280–9291

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Wang Y, Zhou Y, Zhao M (2013) Natural occurrence of deoxynivalenol in soy sauces consumed in China. Food Control 29:71–75

    Article  Google Scholar 

  • Zhou HR, Lau AS, Pestka JJ (2003) Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci 74(2):335–344

    Article  PubMed  CAS  Google Scholar 

  • Zhou HR, Islam Z, Pestka JJ (2005) Induction of competing apoptosis and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicol Sci 87:113–122

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, He Z, Li H, Han P, Tang J, Xi C, Li Y, Zhang L, Li X (2012) Development and application of a method for the analysis of two trichothecenes: deoxynivalenol and T-2 toxin in meat in China by HPLC-MS/MS. Meat Sci 90:613–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the projects of Excellence FIM UHK and MH CZ—DRO (UHHK, 00179906).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghua Wu or Zhihong Tian.

Additional information

Zhonghong Wang, Qinghua Wu and Kamil Kuča have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, Q., Kuča, K. et al. Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol 88, 1915–1928 (2014). https://doi.org/10.1007/s00204-014-1354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1354-z

Keywords

Navigation