Skip to main content

Advertisement

Log in

Cold survival strategies for bacteria, recent advancement and potential industrial applications

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aehle W (2007) Enzymes in industry: production and applications. Wiley, Hoboken

    Google Scholar 

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonashaloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6(12):1503–1516

    CAS  PubMed  Google Scholar 

  • Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20(7):1681–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Shukuri M, Fuzi M, Farhanie S, Ganasen M, Rahman A, Salleh AB (2013) Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches. BioMed Res Int

  • Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, … Schipper LA (2016) On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55(12):1681–1688

    CAS  PubMed  Google Scholar 

  • Aslam SN, Underwood GJ, Kaartokallio H, Norman L, Autio R, Fischer M, Thomas DN (2012) Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biol 35(5):661–676

    Google Scholar 

  • Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, … Rodrigues D (2010) The genome sequence of Psychrobacterarcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76(7):2304–2312

    PubMed  PubMed Central  Google Scholar 

  • Aznauryan M, Nettels D, Holla A, Hofmann H, Schuler B (2013) Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J Am Chem Soc 135(38):14040–14043

    CAS  PubMed  Google Scholar 

  • Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109(1):31–44

    CAS  PubMed  Google Scholar 

  • Bajaj S, Singh DK (2015) Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: mini review. Int Biodeter Biodegr 100:98–105

    CAS  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400(1):212–226

    CAS  PubMed  Google Scholar 

  • Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159(12):2437–2443

    CAS  PubMed  Google Scholar 

  • Basheer SA, Thenmozhi M (2010) Reverse micellar separation of lipases: a critical review. Int J Chem Sci 8(5):57–67

    Google Scholar 

  • Berlemont R, Delsaute M, Pipers D, D’amico S, Feller G, Galleni M, Power P (2009) Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J 3(9):1070

    CAS  PubMed  Google Scholar 

  • Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191(11):825–835

    PubMed  Google Scholar 

  • Bowman JS, Deming JW (2014) Alkane hydroxylase genes in psychrophile genomes and the potential for cold-active catalysis. BMC Genomics 15(1):1120

    PubMed  PubMed Central  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82(2):217–241

    CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnol 4(4):449–460

    CAS  Google Scholar 

  • Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31(1):157–165

    CAS  PubMed  Google Scholar 

  • Chattopadhyay M, Jagannadham M (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24(5):386–388

    Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand. France) 50(5):631–642

    CAS  Google Scholar 

  • Cipolla A, D’Amico S, Barumandzadeh R, Matagne A, Feller G (2011) Stepwise adaptations to low temperature as revealed by multiple mutants of psychrophilic α-amylase from Antarctic bacterium. J Biol Chem 286(44):38348–38355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Meuwis MA, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328(2):419–428

    CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    CAS  PubMed  Google Scholar 

  • Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374(2):547–562

    CAS  PubMed  Google Scholar 

  • Creighton TE (1991) Stability of folded conformations: Current opinion in structural biology 1991. Curr Opin Struct Biol 1(1):5–16 1), 5–16.

    CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276(28):25791–25796

    PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    PubMed  PubMed Central  Google Scholar 

  • Dalmaso GZL, Ferreira D, &Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damhus T, Kaasgaard S, Olsen HS (eds) (2013) Enzymes at work. Novozymes

  • DasSarma S, Capes MD, Karan R, DasSarma P (2013) Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One, 8(3):e58587

  • De Los Ríos A, Grube M, Sancho LG, Ascaso C (2006) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59(2):386–395

    Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO reports, e201338170

  • De Santi C, Leiros HKS, Di Scala A, de Pascale D, Altermark B, Willassen NP (2016) Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles 20(3):323–336

    PubMed  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309

    CAS  PubMed  Google Scholar 

  • Dick M, Weiergräber OH, Classen T, Bisterfeld C, Bramski J, Gohlke H, Pietruszka J (2016) Trading off stability against activity in extremophilic aldolases. Sci Rep 6:17908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, … Kim HJ (2013) Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallographica Section F. Struct Biol Cryst Commun 69(8):920–924

    CAS  Google Scholar 

  • Dolev MB, Bernheim R, Guo S, Davies PL, Braslavsky I (2016) Putting life on ice: bacteria that bind to frozen water. J R Soc Interface 13(121):20160210

    PubMed  PubMed Central  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30(3):322–328

    Google Scholar 

  • Emampour M, Noghabi KA, Zahiri HS (2015) Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J Mol Catal B Enzymatic 111:79–86

    CAS  Google Scholar 

  • Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R (2014) Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations. J Agric Food Chem 62(22):5126–5132

    CAS  PubMed  Google Scholar 

  • Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R (2015) Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT-Food Sci Technol 60(1):246–252

    CAS  Google Scholar 

  • Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17(1):65–77

    CAS  Google Scholar 

  • Fan X, Liang W, Li Y, Li H, Liu X (2017) Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microbial Cell Factories 16(1):149

    PubMed  PubMed Central  Google Scholar 

  • Fedøy AE, Yang N, Martinez A, Leiros HKS, Steen IH (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372(1):130–149

    PubMed  Google Scholar 

  • Feeney RE, Yeh Y (1998) Antifreeze proteins: current status and possible food uses. Trends Food Sci Technol 9(3):102–106

    CAS  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. CMLS 60(4):648–662

    CAS  PubMed  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. CMLS 53(10):830–841

    CAS  PubMed  Google Scholar 

  • Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C (1994) Stability and structural analysis of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222(2):441–447

    CAS  PubMed  Google Scholar 

  • Feng S, Powell SM, Wilson R, Bowman JP (2013) Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexustorquis is salinity dependent. ISME J 7(11):2206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci 95(19):11476–11481

    CAS  PubMed  Google Scholar 

  • Frank S, Schmidt F, Klockgether J, Davenport CF, Gesell Salazar M, Völker U, Tümmler B (2011) Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS Microbiol Lett 318(1):47–54

    CAS  PubMed  Google Scholar 

  • Gai N, Pan J, Tang H, Chen S, Chen D, Zhu X, … Yang Y (2014) Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau. Sci Total Environ 478:90–97

    CAS  PubMed  Google Scholar 

  • Ganjalikhany MR, Ranjbar B, Taghavi AH, Moghadam TT (2012) Functional motions of Candida antarctica lipase B: a survey through open-close conformations. PLoS One 7(7):e40327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garsoux G, Lamotte J, Gerday C, Feller G (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonashaloplanktis. Biochem J 384(2):247–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1), 25–42

    CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, … Hoyoux A (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18(3):103–107

    CAS  PubMed  Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245(1):67–72

    CAS  PubMed  Google Scholar 

  • Goodchild A, Raftery M, Saunders NF, Guilhaus M, Cavicchioli R (2004) Biology of the cold adapted archaeon, methanococcoides b urtonii determined by proteomics using liquid chromatography–tandem mass spectrometry. J Proteome Res 3(6):1164–1176

    CAS  PubMed  Google Scholar 

  • Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4(8):474

    CAS  PubMed  Google Scholar 

  • Goomber S, Kumar A, Singh R, Kaur J (2016) Point mutation ile137-Met near surface conferred psychrophilic behaviour and improved catalytic efficiency to bacillus lipase of 1.4 subfamily. Appl Biochem Biotechnol 178(4):753–765

    CAS  PubMed  Google Scholar 

  • Goutte A, Chevreuil M, Alliot F, Chastel O, Cherel Y, Eléaume M, Massé G (2013) Persistent organic pollutants in benthic and pelagic organisms off Adélie Land, Antarctica. Mar Pollut Bull 77(1):82–89

    CAS  PubMed  Google Scholar 

  • Graziano G (2014) On the mechanism of cold denaturation. Phys Chem Chem Phys 16(39):21755–21767

    CAS  PubMed  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice. Spitzbergen Extremophiles 8(6):475–488

    CAS  PubMed  Google Scholar 

  • Gulevsky AK, Relina LI (2013) Molecular and genetic aspects of protein cold denaturation. CryoLetters 34(1):62–82

    CAS  PubMed  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int

  • Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H (2014) Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 281(16):3576–3590

    CAS  PubMed  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964

    CAS  PubMed  Google Scholar 

  • Hildebrandt P, Wanarska M, Kur J (2009) A new cold-adapted β-d-galactosidase from the Antarctic Arthrobacter sp. 32c-gene cloning, overexpression, purification and properties. BMC Microbiol 9(1):1

    Google Scholar 

  • Hong S, Lee C, Jang SH (2012) Purification and properties of an extracellular esterase from a cold-adapted Pseudomonas mandelii. Biotechnol Lett 34(6):1051–1055

    CAS  PubMed  Google Scholar 

  • Iftikhar T, Niaz M, Jabeen R, Haq IU (2011) Purification and characterization of extracellular lipases. Pak J Bot 43(3):1541–1545

    Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci 104(43):16822–16827

    CAS  PubMed  Google Scholar 

  • Jadhav VV, Pote SS, Yadav A, Shouche YS, Bhadekar RK (2013) Extracellular cold-active lipase from the psychrotrophic Halomonas sp. BRI 8 isolated from the Antarctic sea water. Songklanakarin J Sci Technol 35(6)

  • Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, … Lee JH (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81(5):865–874

    CAS  PubMed  Google Scholar 

  • Ji X, Chen G, Zhang Q, Lin L, Wei Y (2015) Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 55(6):718–728

    CAS  PubMed  Google Scholar 

  • Jiang H, Zhang S, Gao H, Hu N (2016) Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution. BMC Biotechnol 16(1):7

    PubMed  PubMed Central  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold-active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26(5):457–470

    CAS  PubMed  Google Scholar 

  • Joseph B, Upadhyaya S, Ramteke P (2011) Production of cold-active bacterial lipases through semisolid state fermentation using oil cakes. Enzyme Res

  • Jung SK, Jeong DG, Lee MS, Lee JK, Kim HK, Ryu SE, Kim SJ (2008) Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins: Struct Funct Bioinf 71(1):476–484

    CAS  Google Scholar 

  • Kahlke T, Thorvaldsen S (2012) Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome. PLoS One 7(12):e51761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamekura M (1998) Diversity of extremely halophilic bacteria. Extremophiles 2(3):289–295

    CAS  PubMed  Google Scholar 

  • Karasova PETRA, Spiwok VO, J. T. ĚCH, Mala S, Kralova BLANKA, Russell NJ (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20(2):43–47

    CAS  Google Scholar 

  • Kashif A, Tran LH, Jang SH, Lee C (2017) Roles of active-site aromatic residues in cold adaptation of Sphingomonas glacialis Esterase EstSP1. ACS Omega 2(12):8760–8769

    CAS  Google Scholar 

  • Kato C (2008) Protein adaptation to high-pressure environments. Rev High Pressure Sci Technol 18(2)

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64(4):1510–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Lee YJ, Gao W, Chung CH, Son CW, Lee JW (2011) Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method. Biotechnol Bioproc Eng 16(3):542–548

    CAS  Google Scholar 

  • Kim SM, Park H, Choi JI (2017) Cloning and characterization of cold-adapted α-amylase from antarctic Arthrobacteragilis. Appl Biochem Biotechnol 181(3):1048–1059

    CAS  PubMed  Google Scholar 

  • Kokkinidis M, Glykos NM, Fadouloglou VE (2012) Protein flexibility and enzymatic catalysis. In: Advances in protein chemistry and structural biology, vol 87. Academic Press, pp 181–218

  • Kovacic F, Mandrysch A, Poojari C, Strodel B, Jaeger KE (2015) Structural features determining thermal adaptation of esterases. Protein Eng Des Select 29(2):65–76

    Google Scholar 

  • Kristiansen E, Ramløv H, Højrup P, Pedersen SA, Hagen L, Zachariassen KE (2011) Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochem Mol Biol 41(2):109–117

    CAS  PubMed  Google Scholar 

  • Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 38(4):330–338

    CAS  PubMed  Google Scholar 

  • Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61(6):494

    CAS  Google Scholar 

  • Lee RE, Warren GJ, Gusta LV (1995) Biological ice nucleation and its applications

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60(2):222–228

    CAS  PubMed  Google Scholar 

  • Lee HW, Jeon HY, Choi HJ, Kim NR, Choung WJ, Koo YS, … Shim JH (2016) Characterization and application of BiLA, a psychrophilic α-amylase from Bifidobacterium longum. J Agric Food Chem 64(13):2709–2718

    CAS  PubMed  Google Scholar 

  • Lee C, Jang SH, Chung HS (2017) Improving the stability of cold-adapted enzymes by immobilization. Catalysts 7(4):112

    Google Scholar 

  • Leonov SL (2010) Screening for novel cold-active lipases from wild type bacteria isolates. Innov Roman Food Biotechnol 6:12

    CAS  Google Scholar 

  • Li M, Yang LR, Xu G, Wu JP (2013) Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148:114–120

    CAS  PubMed  Google Scholar 

  • Li S, Yang X, Zhang L, Yu W, Han F (2015) Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marine bacterium Agarivorans sp. J Microbiol Biotechnol 25(5):681–686

    CAS  PubMed  Google Scholar 

  • Lian K, Leiros HKS, Moe E (2015) MutT from the fish pathogen Aliivibriosalmonicida is a cold-active nucleotide-pool sanitization enzyme with unexpectedly high thermostability. FEBS Open Biol 5:107–116

    CAS  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000). Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1543(1), 1–10

    CAS  Google Scholar 

  • Lorv JS, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica, 2014

  • Lu M, Wang S, Fang Y, Li H, Liu S, Liu H (2010) Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. Protein J 29(8):591–597

    CAS  PubMed  Google Scholar 

  • Lu Z, Wang Q, Jiang S, Zhang G, Ma Y (2016) Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703. Sci Rep 6:22465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavi A, Hassan Sajedi R, Rassa M, Jafarian V (2010) Characterization of an a-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iran J Biotechnol 8(2):103–111

    CAS  Google Scholar 

  • Maiangwa J, Ali MSM, Salleh AB, Rahman RNZRA, Shariff FM, Leow TC (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19(2):235–247

    CAS  PubMed  Google Scholar 

  • Maraite A, Hoyos P, Carballeira JD, Cabrera ÁC, Ansorge-Schumacher MB, Alcántara AR (2013) Lipase from Pseudomonas stutzeri: purification, homology modelling and rational explanation of the substrate binding mode. J Mol Catal B: Enzymatic 87:88–98

    CAS  Google Scholar 

  • Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior biodegrad 46(1):3–10

    CAS  Google Scholar 

  • Marshall CJ (1997) Cold-adapted enzymes. Trends Biotechnol 15(9):359–364

    CAS  PubMed  Google Scholar 

  • Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9(3):293–304

    CAS  PubMed  Google Scholar 

  • Master ER, Mohn WW (1998) Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 64(12):4823–4829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo C, Monti R, Pessela BC, Fuentes M, Torres R, Manuel Guisán J, Fernández-Lafuente R (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20(4):1259–1262

    CAS  PubMed  Google Scholar 

  • Michaux C, Massant J, Kerff F, Frère JM, Docquier JD, Vandenberghe I, Van Beeumen J (2008) Crystal structure of a cold-adapted class C β-lactamase. FEBS J 275(8):1687–1697

    CAS  PubMed  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583(4):815–819

    CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015) Enhanced functionality and stabilization of a cold-active laccase using nanotechnology based activation-immobilization. Bioresour Technol 179:573–584

    CAS  PubMed  Google Scholar 

  • Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at − 15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajan S (2012) New tools for exploring “old friends—microbial lipases”. Appl Biochem Biotechnol 168(5):1163–1196

    CAS  PubMed  Google Scholar 

  • Narinx E, Baise E, Gerday C (1997) Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10(11):1271–1279

    CAS  PubMed  Google Scholar 

  • Nielsen PH (2005) Life cycle assessment supports cold-wash enzymes. SÖFW-J 131(10), 24–26

    CAS  Google Scholar 

  • Nielsen PH, Skagerlind P (2007) Cost-neutral replacement of surfactants with enzymes-a short-cut to environmental improvement for laundry washing. Househ Pers Care Today 4:3–7

    Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611

    PubMed  PubMed Central  Google Scholar 

  • Novototskaya-Vlasova K, Petrovskaya L, Yakimov S, Gilichinsky D (2012) Cloning, purification, and characterization of a cold-adapted esterase produced by Psychrobactercryohalolentis K5T from Siberian cryopeg. FEMS Microbiol Ecol 82(2):367–375

    CAS  PubMed  Google Scholar 

  • Peterson ME, Daniel RM, Danson MJ, Eisenthal R (2007) The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem J 402(2):331–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4(3):137–144

    CAS  PubMed  Google Scholar 

  • Ramírez-Sarmiento CA, Baez M, Wilson CA, Babul J, Komives EA, Guixé V (2013) Observation of solvent penetration during cold denaturation of E. coli phosphofructokinase-2. Biophys J 104(10):2254–2263

    PubMed  PubMed Central  Google Scholar 

  • Ramli ANM, Azhar MA, Shamsir MS, Rabu A, Murad AMA, Mahadi NM, Illias RM (2013) Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19(8):3369–3383

    CAS  PubMed  Google Scholar 

  • Ramnath L, Sithole B, Govinden R (2016) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63(3):179–192

    PubMed  Google Scholar 

  • Rapp P, Gabriel-Jürgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149(10):2879–2890

    CAS  PubMed  Google Scholar 

  • Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149(1):1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol 233(3):351–362

    CAS  PubMed  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci 74(6):2589–2593

    CAS  PubMed  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221

    CAS  PubMed  Google Scholar 

  • Risebrough RW, Walker W, Schmidt TT, De Lappe BW, Connors CW (1976) Transfer of chlorinated biphenyls to Antarctica

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roohi R, Kuddus M, Saima S (2013) Cold-active detergent-stable extracellular α-amylase from Bacillus cereus GA6&58; biochemical characteristics and its perspectives in laundry detergent formulation. J Biochem Technol 4(4):636–644

    CAS  Google Scholar 

  • Saito R, Nakayama A (2004) Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 and the psychrophilic bacterium Moritella sp. strain 57101. FEMS Microbiol Lett 233(1):165–172

    CAS  PubMed  Google Scholar 

  • Sally OY, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61(3):327–334

    Google Scholar 

  • Sharma S, Khan FG, Qazi GN (2010) Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl Microbiol Biotechnol 86(6):1821–1828

    CAS  PubMed  Google Scholar 

  • Siddiqui KS (2017) Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol 37(3):309–322

    PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    CAS  PubMed  Google Scholar 

  • Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269(5232):1851

    CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Madhavan A, Beevi US, Mathew AK, Abraham A, Kumar V (2017) Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour Technol

  • Soares FL, Melo IS, Dias ACF, Andreote FD (2012) Cellulolytic bacteria from soils in harsh environments. World J Microbiol Biotechnol 28(5):2195–2203

    CAS  PubMed  Google Scholar 

  • Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41(9):776–784

    CAS  PubMed  Google Scholar 

  • Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol

  • TePoele S, Van der Graaf J (2005) Enzymatic cleaning in ultrafiltration of wastewater treatment plant effluent. Desalination 179(1):73–81

    CAS  Google Scholar 

  • Truongvan N, Jang SH, Lee C (2016) Flexibility and stability trade-off in active site of cold-adapted Pseudomonas mandelii Esterase EstK. Biochemistry 55(25):3542–3549

    CAS  PubMed  Google Scholar 

  • Tuyen H, Helmke E, Schweder T (2001) Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5(1):35–44

    PubMed  Google Scholar 

  • Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1, 3 glucanase, and β-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157(1):26–32

    PubMed  Google Scholar 

  • Vajpai N, Nisius L, Wiktor M, Grzesiek S (2013) High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci 110(5):E368–E376

    CAS  PubMed  Google Scholar 

  • Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 å resolution structural adaptations to cold and investigation of the active site. J Biol Chem 278(9):7531–7539

    PubMed  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 99(2):717–727

    CAS  PubMed  Google Scholar 

  • Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, … Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas ha0loplanktis revealed by X-ray diffraction and small angle X-ray scattering. Journal of molecular biology 348(5):1211–1224

    CAS  PubMed  Google Scholar 

  • Wang Q, Hou Y, Ding Y, Yan P (2012) Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70 Mol Biol Rep 39(9):9233–9238

    CAS  PubMed  Google Scholar 

  • Wang YB, Gao C, Zheng Z, Liu FM, Zang JY, Miao JL (2015) Immobilization of cold-active cellulase from antarctic bacterium and its use for kelp cellulose ethanol fermentation. BioResources 10(1):1757–1772

    Google Scholar 

  • Wi AR, Jeon SJ, Kim S, Park HJ, Kim D, Han SJ, … Kim HW (2014) Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol Lett 36(6):1295–1302

    CAS  PubMed  Google Scholar 

  • Wiebe WJ, Sheldon WM, Pomeroy LR (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl Environ Microbiol 58(1):359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfenden R (2011) Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes. Annu Rev Biochem 80:645–667

    CAS  PubMed  Google Scholar 

  • Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Accounts Chem Res 34(12):938–945

    CAS  Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277(2):394–403

    CAS  PubMed  Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44(1):64–73

    CAS  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53(2):533–538

    CAS  PubMed  Google Scholar 

  • Xuezheng L, Shuoshuo C, Guoying X, Shuai W, Ning D, Jihong S (2010) Cloning and heterologous expression of two cold-active lipases from the Antarctic bacterium Psychrobacter sp. G Polar Res 29(3):421–429

    Google Scholar 

  • Yang J, Dang H (2011) Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiol Lett 325(1):71–76

    CAS  PubMed  Google Scholar 

  • Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Cavicchioli R (2011) Virophage control of antarctic algal host–virus dynamics. Proc Natl Acad Sci 108(15):6163–6168

    CAS  PubMed  Google Scholar 

  • Yeh CM, Kao BY, Peng HJ (2009) Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. J Agric Food Chem 57(14):6216–6223

    CAS  PubMed  Google Scholar 

  • Yun QI, Lin ZHAO, Ojekunle ZO, Xin TAN (2007) Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J Environm Sci 19(3):332–337

    Google Scholar 

  • Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16(8):599–605

    CAS  PubMed  Google Scholar 

  • Zhang L, Wang Y, Liang J, Song Q, Zhang XH (2016) Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre. Extremophiles 20(5):663–671

    CAS  PubMed  Google Scholar 

  • Zhao GY, Zhou MY, Zhao HL, Chen XL, Xie BB, Zhang XY, … Zhang YZ (2012) Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chem 134(4):1738–1744

    CAS  PubMed  Google Scholar 

  • Zheng G, Selvam A, Wong JW (2011) Rapid degradation of lindane (γ-hexachlorocyclohexane) at low temperature by Sphingobiumstrains. Int Biodeterior Biodegrad 65(4):612–618

    CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance provided by NASF research grant (project entitled “Bioremediation of chemical contaminants and their complexes present in drainage water with high dynamic flux used for irrigation in urban and periurban agriculture”), sanction no. NASF/CA-6030/2017-18 is highly acknowledged. The first author is obliged to CSIR-UGC JRF Fellowship, University Grant Commission (UGC), Government of India, for providing the stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar Singh.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaulaniya, A.S., Balan, B., kumar, M. et al. Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 201, 1–16 (2019). https://doi.org/10.1007/s00203-018-1602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1602-3

Keywords

Navigation