Skip to main content
Log in

Fluctuation in recoverable nickel and zinc resistant copiotrophic bacteria explained by the varying zinc ion content of Torsa River in different months

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Heavy metal content analysis of River Torsa in India did not indicate any alarming level of toxicity for human consumption but revealed variation at the ppb level in different months. The variation in recoverable nickel and zinc resistant copiotrophic (or eutrophic) bacterial counts was explained by the variation of the zinc content (34.0–691.3 ppb) of the river water in different sampling months. Growth studies conducted with some purified nickel and/or zinc resistant strains revealed that pre-exposure of the cells to ppb levels of Zn2+, comparable to the indigenous zinc ion concentration of the river, could induce the nickel or zinc resistance. A minimum concentration of 5–10 μM Zn2+ (325–650 ppb) was found effective in inducing the Nickel resistance of the isolates. Zinc resistance of the isolates was tested by pre-exposing the cells to 4 μM Zn2+ (260 ppb). The lag phase was reduced by 6–8 h in all the cases. Biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicated that some of the Torsa River isolates, having inducible nickel and zinc resistance, are members of the genus Pseudomonas, Acinetobacter, Bacillus, Enterobacter, Serratia and Moraxella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • APHA (1985) Standard methods for examination of water and waste water, 17th edn. APHA, Washington

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants that hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bhadra B (2006) Identification of nickel resistant genes in suitable Gram-negative bacterial isolates with reference to the physicochemical and sanitary status of river Torsa. Thesis, Department of Botany, North Bengal University, Siliguri

  • Bhadra B, Mukherjee S, Chakraborty R, Nanda AK (2003) Physicochemical and bacteriological investigation on the river Torsa of North Bengal. J Environ Biol 24:125–133

    PubMed  CAS  Google Scholar 

  • Bhadra B, Das S, Chakraborty R, Nanda AK (2005a) Investigation of some basic water quality parameters of the North Bengal terai river Kaljani—a tributary of River Torsa, and comparison thereof with the mainstream. J Environ Biol 26:277–286

    CAS  Google Scholar 

  • Bhadra B, Roy P, Chakraborty R (2005b) Serratia ureilytica sp. nov., a novel urea utilizing species. Int J Syst Evol Microbiol 55:2155–2158

    Article  CAS  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal rRNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Friedrich CG, Schneider K, Friedrich B (1982) Nickel is in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol 152:42–48

    PubMed  CAS  Google Scholar 

  • Grass G, Große C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistant determinant from Ralstonia sp. Strain CH34. J Bacteriol 182:1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Grimont F, Grimont PAD (1992) The genus Enterobacter. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 3, 2nd edn. Springer, New York

  • Hausinger RP (1985) Nickel utilization by microorganisms. Microbiol Rev 51:22–42

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and micro-organism. Chapman & Hall, London, pp 280–285

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3.1: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Chang HH, Lee HJ, Park H, Lee KH, Joe MH (2006) Isolation of a novel plasmid, pNi15, from Enterobacter sp. Ni15 containing a nickel resistance gene. FEMS Microbiol Lett 257:177–181

    Article  PubMed  CAS  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL 28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    PubMed  CAS  Google Scholar 

  • Mattsby-Baltzer I, Sandin M, Ahiström B, Allemark S, Edebo M, Falsen E, Pedersen K, Rodia N, Thompson RA, Edebo L (1989) Microbial growth and accumulation in industrial metalworking fluids. Appl Environ Microbiol 55:2681–2689

    PubMed  CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978) Extra-chromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochim 86:440–441

    PubMed  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27:4–16

    Article  PubMed  CAS  Google Scholar 

  • Nies D H, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    PubMed  CAS  Google Scholar 

  • Park JE, Young KE, Schlegel HG, Rhie HG, Lee HS (2003) Conjugative plasmid mediated inducible Nickel resistance in Hafnia alvei 5–5. Int Microbiol 6:57–64

    PubMed  CAS  Google Scholar 

  • Pickup RW, Mallinson HEH, Rhodes G, Chatfield LK (1997) A novel nickel resistance determinant found in sewage associated bacteria. Microbiol Ecol 25:230–239

    Article  Google Scholar 

  • Poole RK, Gadd GM (1989) Metals: microbe interactions. IRL Press, Oxford, pp 1–37

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel–cobalt–cadmium resistance in Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054

    PubMed  CAS  Google Scholar 

  • Shiller AM, Boyle E (1985) Dissolved zinc in rivers. Nature, 317:41–52

    Article  Google Scholar 

  • Stoppel RD, Schlegel HG (1995) Nickel resistant bacteria from anthropogenically nickel polluted and naturally nickel percolated ecosystems. Appl Environ Microbiol 61:2276–2285

    PubMed  CAS  Google Scholar 

  • Stoppel RD, Mayer M, Schlegel HG (1995) Nickel resistant determinant cloned from the enterobacterium Klebsiella oxytoca: conjugal transfer, expression, regulation and DNA homologies to various nickel resistant bacteria. Biometals 8:70–79

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M, Wyns L, Lilie D van der (2000) Regulation of the cnr cobalt and nickel resistant determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1299–1409

    Article  Google Scholar 

  • Timotius K, Schlegel HG (1987) Aus Abwässern isolierte Nickel-resistente Bakterien. Nachrichten Akad. Wiss. Gottingen. II. Math Physik KI 3:15–23

    Google Scholar 

  • Trajanovska S, Brits ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from lead-contaminated site. Biodegradation 8:113–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by ‘Council of Scientific and Industrial Research’ under sanction no. 9/285(16)/2001-EMR-I. We also acknowledge the cooperation of the Department of Chemistry, Burdwan University, India, for AAS analysis of samples, and MTCC, Chandigarh, India, for providing biochemical properties of some isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranadhir Chakraborty.

Additional information

Communicated by Jörg Overmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadra, B., Nanda, A.K. & Chakraborty, R. Fluctuation in recoverable nickel and zinc resistant copiotrophic bacteria explained by the varying zinc ion content of Torsa River in different months. Arch Microbiol 188, 215–224 (2007). https://doi.org/10.1007/s00203-007-0236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0236-7

Keywords

Navigation