Skip to main content
Log in

Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanogenic archaea are generally thought to use tetrahydromethanopterin or tetrahydrosarcinapterin (H4SPT) rather than tetrahydrofolate (H4F) as a pterin C1 carrier. However, the genome sequence of Methanosarcina species recently revealed a cluster of genes, purN, folD, glyA and metF, that are predicted to encode for H4F-specific enzymes. We show here for folD and glyA from M. barkeri that this prediction is correct: FolD (bifunctional N5,N10-methylene-H4F dehydrogenase/N5,N10-methenyl-H4F cyclohydrolase) and GlyA (serine:H4F hydroxymethyltransferase) were heterologously overproduced in Escherichia coli, purified and found to be specific for methylene-H4F and H4F, respectively (apparent Km below 5 μM). Western blot analyses and enzyme activity measurements revealed that both enzymes were synthesized in M. barkeri. The results thus indicate that M. barkeri should contain H4F, which was supported by the finding that growth of M. barkeri was dependent on folic acid and that the vitamin could be substituted by p-aminobenzoic acid, a biosynthetic precursor of H4F. From the p-aminobenzoic acid requirement, an intracellular H4F concentration of approximately 5 μM was estimated. Evidence is presented that the p-aminobenzoic acid taken up by the growing cells was not required for the biosynthesis of H4SPT, which was found to be present in the cells at a concentration above 3 mM. The presence of both H4SPT and H4F in M. barkeri is in agreement with earlier isotope labeling studies indicating that there are two separate C1 pools in these methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H4F:

tetrahydrofolate

H4MPT:

tetrahydromethanopterin

H4SPT:

tetrahydrosarcinapterin

pABA:

p-aminobenzoic acid

FolD:

methylene-H4F dehydrogenase/methenyl-H4F cyclohydrolase

GlyA:

serine hydroxymethyltransferase

MetF:

methylene-H4F reductase

References

  • Angelaccio S, Chiaraluce R, Consalvi V, Buchenau B, Giangiacomo L, Bossa F, Contestabile R (2003) Catalytic and thermodynamic properties of tetrahydromethanopterin-dependent serine hydroxymethyltransferase from Methanococcus jannaschii. J Biol Chem 278:41789–41797

    Article  CAS  PubMed  Google Scholar 

  • Blakley RL (1984) Dihydrofolate reductase. In: Blakley RL, Benkovic SJ (eds) Folates and pterins. Wiley, New York

    Google Scholar 

  • Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    CAS  PubMed  Google Scholar 

  • Caccamo MA, Malone CS, Rasche ME (2004) Biochemical characterization of a dihydromethanopterin reductase involved in tetrahydromethanopterin biosynthesis in Methylobacterium extorquens AM1. J Bacteriol 186:2068–2073

    Google Scholar 

  • Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:99–102

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Jenkins C, Kalyuzhnaya M, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME (2004) The enigmatic Planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21:1234–1241

    Article  CAS  PubMed  Google Scholar 

  • Choquet CG, Richards JC, Patel GB, Sprott GD (1994) Purine and pyrimidine biosynthesis in methanogenic bacteria. Arch Microbiol 161:471–480

    Article  CAS  Google Scholar 

  • Contestabile R, Paiardini A, Pascarella S, Salvo ML di, D’Aguanno S, Bossa F (2001) l-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. A subgroup of strictly related enzymes specialized for different functions. Eur J Biochem 268:6508–6525

    Article  CAS  PubMed  Google Scholar 

  • D’Ari L, Rabinowitz JC (1991) Purification, characterization, cloning, and amino acid sequence of the bifunctional enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase from Escherichia coli. J Biol Chem 266:23953–23958

    CAS  PubMed  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Donnelly MI, Escalante-Semerena JC, Rinehart KL Jr, Wolfe RS (1985) Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts of Methanobacterium. Arch Biochem Biophys 242:430–439

    CAS  PubMed  Google Scholar 

  • Dumitru R, Palencia H, Schroeder SD, DeMontigny BA, Takacs JM, Rasche ME, Miner JL, Ragsdale SW (2003) Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl Environ Microbiol 69:7236–7241

    Article  CAS  PubMed  Google Scholar 

  • Ekiel I, Sprott GD, Patel GB (1985) Acetate and CO2 assimilation by Methanothrix concilii. J Bacteriol 162:905–908

    CAS  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genet Res 12:532–542

    Article  CAS  Google Scholar 

  • Gorris LG, Drift C van der (1994) Cofactor contents of methanogenic bacteria reviewed. Biofactors 4:139–145

    CAS  PubMed  Google Scholar 

  • Graham DE, White RH (2002) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19:133–147

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase–corrinoid enzyme complex. J Biol Chem 266:22227–22233

    PubMed  Google Scholar 

  • Hagemeier CH, Chistoserdova L, Lidstrom ME, Thauer RK, Vorholt JA (2000) Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–3769

    Article  CAS  PubMed  Google Scholar 

  • Hedderich R, Koch J, Linder D, Thauer RK (1994) The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem 225:253–261

    CAS  PubMed  Google Scholar 

  • Herrington MB (1994) Measurement of the uptake of radioactive para-aminobenzoic acid monitors folate biosynthesis in Escherichia coli K-12. Anal Biochem 216:427–430

    Article  CAS  PubMed  Google Scholar 

  • Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76:494–498

    CAS  PubMed  Google Scholar 

  • Hoyt JC, Oren A, Escalante-Semerena JC, Wolfe RS (1986) Tetrahydromethanopterin-dependent serine transhydroxymethylase from Methanobacterium thermoautotrophicum. Arch Microbiol 145:153–158

    CAS  Google Scholar 

  • Kallen RG, Jencks WP (1966) The dissociation constants of tetrahydrofolic acid. J Biol Chem 241:5845–5850

    CAS  PubMed  Google Scholar 

  • Kamagata Y, Kawasaki H, Oyaizu H, Nakamura K, Mikami E, Endo G, Koga Y, Yamasato K (1992) Characterization of three thermophilic strains of Methanothrix (“Methanosaeta”) thermophila sp. nov. and rejection of Methanothrix (“Methanosaeta”) thermoacetophila. Int J Syst Bacteriol 42:463–468

    CAS  PubMed  Google Scholar 

  • Kappock TJ, Ealick SE, Stubbe J (2000) Modular evolution of the purine biosynthetic pathway. Curr Opin Chem Biol 4:567–572

    Article  CAS  PubMed  Google Scholar 

  • Karrasch M, Börner G, Enssle M, Thauer RK (1989) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253:226–230

    Article  CAS  PubMed  Google Scholar 

  • Kumar HP, Tsuji JM, Henderson GB (1987) Folate transport in Lactobacillus salivarius. Characterization of the transport mechanism and purification and properties of the binding component. J Biol Chem 262:7171–7179

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leigh JA (1983) Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria. Appl Environ Microbiol 45:800–803

    CAS  PubMed  Google Scholar 

  • Li H, Xu H, Graham DE, White RH (2003) Glutathione synthetase homologs encode α-l-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci USA 100:9785–9790

    Article  CAS  PubMed  Google Scholar 

  • Lienard T, Becher B, Marschall M, Bowien S, Gottschalk G (1996) Sodium ion translocation by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes. Eur J Biochem 239:857–864

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Sparling R (1998) Investigation of serine hydroxymethyltransferase in methanogens. Can J Microbiol 44:652–656

    Article  CAS  PubMed  Google Scholar 

  • Maden BEH (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350:609–629

    Article  CAS  PubMed  Google Scholar 

  • Marolewski AE, Mattia KM, Warren MS, Benkovic SJ (1997) Formyl phosphate: a proposed intermediate in the reaction catalyzed by Escherichia coli PurT GAR transformylase. Biochemistry 36:6709–6716

    Article  CAS  PubMed  Google Scholar 

  • Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456

    Article  CAS  PubMed  Google Scholar 

  • McCarthy EA, Titus SA, Taylor SM, Jackson-Cooke C, Moran RG (2004) A mutation inactivating the mitochondrial inner membrane folate transporter creates a glycine requirement for survival of chinese hamster cells. J Biol Chem. DOI 10.1074/jbc.M403677200

  • Myllykallio H, Leduc D, Filee J, Liebl U (2003) Life without dihydrofolate reductase FolA. Trends Microbiol 11:220–223

    CAS  PubMed  Google Scholar 

  • Perski HJ, Schönheit P, Thauer RK (1982) Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett 143:323–326

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor,N.Y.

    Google Scholar 

  • Schirch L (1982) Serine hydroxymethyltransferase. Adv Enzymol Relat Areas Mol Biol 53:83–112

    CAS  PubMed  Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (KS, μmax, YS) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Schröder I, Thauer RK (1999) Methylcobalamin: homocysteine methyltransferase from Methanobacterium thermoautotrophicum. Identification as the metE gene product. Eur J Biochem 263:789–796

    Article  PubMed  Google Scholar 

  • Scott JW, Rasche ME (2002) Purification, overproduction, and partial characterization of β-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway. J Bacteriol 184:4442–4448

    Article  CAS  PubMed  Google Scholar 

  • Shane B, Stokstad EL (1975) Transport and metabolism of folates by bacteria. J Biol Chem 250:2243–2253

    CAS  PubMed  Google Scholar 

  • Shima S, Thauer RK (2001) Tetrahydromethanopterin-specific enzymes from Methanopyrus kandleri. Methods Enzymol 331:317–353

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK, Ermler U (2000) Structure of coenzyme F420-dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J Mol Biol 300:935–950

    Article  CAS  PubMed  Google Scholar 

  • Shiota T (1984) Biosynthesis of folate from pterin precursors. In: Blakley RL, Benkovic SJ (eds) Folates and pterins. Wiley, New York

    Google Scholar 

  • Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV et al (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    CAS  PubMed  Google Scholar 

  • Tanner RS, McInerney MJ, Nagle DP Jr (1989) Formate auxotroph of Methanobacterium thermoautotrophicum Marburg. J Bacteriol 171:6534–6538

    CAS  PubMed  Google Scholar 

  • Temple C Jr, Montgomery JA (1984) Chemical and physical properties of folic acid and reduced derivatives. In: Blakley RL, Benkovic SJ (eds) Folates and pterins. Wiley, New York

    Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    CAS  PubMed  Google Scholar 

  • Thauer RK, Klein AR, Hartmann GC (1996) Reactions with molecular hydrogen in microorganisms. Evidence for a purely organic hydrogenation catalyst. Chem Rev 96:3031–3042

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249

    Article  CAS  PubMed  Google Scholar 

  • Vorholt J, Kunow J, Stetter KO, Thauer RK (1995) Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 163:112–118

    Article  CAS  Google Scholar 

  • Vorholt JA, Hafenbradl D, Stetter KO, Thauer RK (1997) Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol 167:19–23

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180:5351–5356

    CAS  PubMed  Google Scholar 

  • Wasserfallen A, Nolling J, Pfister P, Reeve J, Macario EC de (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50:43–53

    CAS  PubMed  Google Scholar 

  • Weimer PJ, Zeikus JG (1978) One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol 119:49–57

    CAS  PubMed  Google Scholar 

  • White RH (1985) Biosynthesis of 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane by methanogenic bacteria. Arch Microbiol 143:1–5

    CAS  Google Scholar 

  • White RH (1991) Distribution of folates and modified folates in extremely thermophilic bacteria. J Bacteriol 173:1987–1991

    CAS  PubMed  Google Scholar 

  • White RH (1998) Methanopterin biosynthesis: methylation of the biosynthetic intermediates. Biochim Biophys Acta 1380:257–267

    Article  CAS  PubMed  Google Scholar 

  • White RH (2001) Biosynthesis of the methanogenic cofactors. Vitam Horm 61:299–337

    Article  CAS  PubMed  Google Scholar 

  • Wilquet V, Van de Casteele M, Gigot D, Legrain C, Glansdorff N (2004) Dihydropteridine reductase as an alternative to dihydrofolate reductase for synthesis of tetrahydrofolate in Thermus thermophilus. J Bacteriol 186:351–355

    Google Scholar 

  • Worrell VE, Nagle DP Jr (1988) Folic acid and pteroylpolyglutamate contents of archaebacteria. J Bacteriol 170:4420–4423

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft and by the Fonds der Chemischen Industrie. We want to thank Dr. D. Linder (University Giessen) for N-terminal sequence analysis of GlyA by Edman degradation. For his helpful advice, we also wish to thank Dr. R. Contestabile (Università “La Sapienza”, Rome, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf K. Thauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchenau, B., Thauer, R.K. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid. Arch Microbiol 182, 313–325 (2004). https://doi.org/10.1007/s00203-004-0714-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0714-0

Keywords

Navigation